Skip to main content

The Development of the AMI System for the Transcription of Speech in Meetings

  • Conference paper
Machine Learning for Multimodal Interaction (MLMI 2005)

Abstract

The automatic processing of speech collected in conference style meetings has attracted considerable interest with several large scale projects devoted to this area. This paper describes the development of a baseline automatic speech transcription system for meetings in the context of the AMI (Augmented Multiparty Interaction) project. We present several techniques important to processing of this data and show the performance in terms of word error rates (WERs). An important aspect of transcription of this data is the necessary flexibility in terms of audio pre-processing. Real world systems have to deal with flexible input, for example by using microphone arrays or randomly placed microphones in a room. Automatic segmentation and microphone array processing techniques are described and the effect on WERs is discussed. The system and its components presented in this paper yield competitive performance and form a baseline for future research in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Black, A.W., Taylor, P., Caley, R.: The Festival Speech Synthesis System, Version 1.95 beta. CSTR, University of Edinburgh, Edinburgh (2004)

    Google Scholar 

  2. Bulyko, I., Ostendorf, M., Stolcke, A.: Getting More Mileage from Web Text Sources for Conversational Speech Language Modeling using Class-Dependent Mixtures. In: Proc. HLT 2003 (2003)

    Google Scholar 

  3. Burger, S., MacLaren, V., Yu, H.: The ISL Meeting Corpus: The Impact of Meeting Type on Speech Style. In: Proc. ICSLP (2002) (2002)

    Google Scholar 

  4. Carletta, J., Ashby, S., Bourban, S., Guillemot, M., Kronenthal, M., Lathoud, G., Lincoln, M., McCowan, I., Hain, T., Kraaij, W., Post, W., Kadlec, J., Wellner, P., Flynn, M., Reidsma, D.: The AMI Meeting Corpus (2005); Submitted to MLMI 2005

    Google Scholar 

  5. Cox, H., Zeskind, R., Kooij, I.: Practical supergain. IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-34(3), 393–397 (1986)

    Article  Google Scholar 

  6. Cox, H., Zeskind, R., Owen, M.: Robust adaptive beamforming. IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-35(10), 1365–1376 (1987)

    Article  Google Scholar 

  7. Fitt, S.: Documentation and user guide to UNISYN lexicon and post-lexical rules, Tech. Rep., Centre for Speech Technology Research, Edinburgh (2000)

    Google Scholar 

  8. Gales, M.J.F., Woodland, P.C.: Mean and Variance Adaptation within the MLLR Framework. Computer Speech & Language 10, 249–264 (1996)

    Article  Google Scholar 

  9. Garafolo, J.S., Laprun, C.D., Michel, M., Stanford, V.M., Tabassi, E.: Proc. 4th Intl. Conf. on Language Resources and Evaluation, LREC 2004 (2004)

    Google Scholar 

  10. Gauvain, J.L., Lee, C.: MAP estimation for multivariate Gaussian mixture observation of Markov Chains. IEEE Tr. Speech & Audio Processing 2, 291–298 (1994)

    Article  Google Scholar 

  11. Hain, T., Woodland, P., Niesler, T., Whittaker, E.: The 1998 HTK system for transcription of conversational telephone speech. In: Proc. IEEE ICASSP (1999)

    Google Scholar 

  12. Hermansky, H.: Perceptual Linear Predictive (PLP) analysis of speech. Acoustical Society of America 87(4), 1738–1752 (1990)

    Article  Google Scholar 

  13. Janin, A., Baron, D., Edwards, J., Ellis, D., Gelbart, D., Morgan, N., Peskin, B., Pfau, T., Shriberg, E., Stolcke, A., Wooters, C.: The ICSI Meeting Corpus. In: ICASSP 2003, Hong Kong (2003)

    Google Scholar 

  14. Klimt, B., Yang, Y.: Introducing the Enron Corpus. In: Second Conference on Email and Anti-Spam, CEAS 2004 (2004)

    Google Scholar 

  15. Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay/ IEEE Transactions on Acoustics. Speech and Signal Processing ASSP-24, 320–327 (August 1976)

    Article  Google Scholar 

  16. Kumar N.: Investigation of Silicon-Auditory Models and Generalization of Linear Discriminant Analysis for Improved Speech Recognition. PhD thesis, John Hopkins University, Baltimore (1997)

    Google Scholar 

  17. Burget, L.: Combination of Speech Features Using Smoothed Heteroscedastic Linear Discriminant Analysis. In: Proc. ICSLP 2004, Jeju island, KR, p. 4 (2004)

    Google Scholar 

  18. Messerschmitt, D., Hedberg, D., Cole, C., Haoui, A., Winship, P.: Digital voice echo canceller with a TMS32020. Appl. Rep. SPRA129, Texas Instruments (1989)

    Google Scholar 

  19. Spring 2004 (RT04S) Rich Transcription Meeting Recognition Evaluation Plan. NIST, US (2004), Available at, http://www.nist.gov/speech

  20. Pfau, T., Ellis, D.P.W.: Hidden markov model based speech activity detection for the ICSI meeting project. In: Eurospeech 2001 (2001)

    Google Scholar 

  21. Schultz, T., Waibel, A., Bett, M., Metze, F., Pan, Y., Ries, K., Schaaf, T., Soltau, H., Westphal, M., Yu, H., Zechner, K.: The ISL Meeting Room System. In: Proc. of the Workshop on Hands-Free Speech Communication (HSC 2001), Kyoto (2001)

    Google Scholar 

  22. Stolcke, A., Wooters, C., Mirghafori, N., Pirinen, T., Bulyko, I., Gelbart, D., Graciarena, M., Otterson, S., Peskin, B., Ostendorf, M.: Progress in Meeting Recognition: The ICSI-SRI-UW Spring 2004 Evaluation System. In: NIST RT 2004 Workshop (2004)

    Google Scholar 

  23. The SRI Language Modelling Toolkit (SRILM). SRI international, California, http://www.speech.sri.com/projects/srilm

  24. Woodland, P.C., Gales, M.J.F., Pye, D., Young, S.J.: Broadcast News Transcription using HTK. In: Proc. ICASSP 1997, Munich, pp. 719–722 (1997)

    Google Scholar 

  25. Wrigley, S., Brown, G., Wan, V., Renals, S.: Speech and crosstalk detection in multichannel audio. IEEE Trans. Speech & Audio Proc. 13(1), 84–91 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hain, T. et al. (2006). The Development of the AMI System for the Transcription of Speech in Meetings. In: Renals, S., Bengio, S. (eds) Machine Learning for Multimodal Interaction. MLMI 2005. Lecture Notes in Computer Science, vol 3869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11677482_30

Download citation

  • DOI: https://doi.org/10.1007/11677482_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32549-9

  • Online ISBN: 978-3-540-32550-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics