Abstract
The automatic processing of speech collected in conference style meetings has attracted considerable interest with several large scale projects devoted to this area. This paper describes the development of a baseline automatic speech transcription system for meetings in the context of the AMI (Augmented Multiparty Interaction) project. We present several techniques important to processing of this data and show the performance in terms of word error rates (WERs). An important aspect of transcription of this data is the necessary flexibility in terms of audio pre-processing. Real world systems have to deal with flexible input, for example by using microphone arrays or randomly placed microphones in a room. Automatic segmentation and microphone array processing techniques are described and the effect on WERs is discussed. The system and its components presented in this paper yield competitive performance and form a baseline for future research in this domain.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Black, A.W., Taylor, P., Caley, R.: The Festival Speech Synthesis System, Version 1.95 beta. CSTR, University of Edinburgh, Edinburgh (2004)
Bulyko, I., Ostendorf, M., Stolcke, A.: Getting More Mileage from Web Text Sources for Conversational Speech Language Modeling using Class-Dependent Mixtures. In: Proc. HLT 2003 (2003)
Burger, S., MacLaren, V., Yu, H.: The ISL Meeting Corpus: The Impact of Meeting Type on Speech Style. In: Proc. ICSLP (2002) (2002)
Carletta, J., Ashby, S., Bourban, S., Guillemot, M., Kronenthal, M., Lathoud, G., Lincoln, M., McCowan, I., Hain, T., Kraaij, W., Post, W., Kadlec, J., Wellner, P., Flynn, M., Reidsma, D.: The AMI Meeting Corpus (2005); Submitted to MLMI 2005
Cox, H., Zeskind, R., Kooij, I.: Practical supergain. IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-34(3), 393–397 (1986)
Cox, H., Zeskind, R., Owen, M.: Robust adaptive beamforming. IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-35(10), 1365–1376 (1987)
Fitt, S.: Documentation and user guide to UNISYN lexicon and post-lexical rules, Tech. Rep., Centre for Speech Technology Research, Edinburgh (2000)
Gales, M.J.F., Woodland, P.C.: Mean and Variance Adaptation within the MLLR Framework. Computer Speech & Language 10, 249–264 (1996)
Garafolo, J.S., Laprun, C.D., Michel, M., Stanford, V.M., Tabassi, E.: Proc. 4th Intl. Conf. on Language Resources and Evaluation, LREC 2004 (2004)
Gauvain, J.L., Lee, C.: MAP estimation for multivariate Gaussian mixture observation of Markov Chains. IEEE Tr. Speech & Audio Processing 2, 291–298 (1994)
Hain, T., Woodland, P., Niesler, T., Whittaker, E.: The 1998 HTK system for transcription of conversational telephone speech. In: Proc. IEEE ICASSP (1999)
Hermansky, H.: Perceptual Linear Predictive (PLP) analysis of speech. Acoustical Society of America 87(4), 1738–1752 (1990)
Janin, A., Baron, D., Edwards, J., Ellis, D., Gelbart, D., Morgan, N., Peskin, B., Pfau, T., Shriberg, E., Stolcke, A., Wooters, C.: The ICSI Meeting Corpus. In: ICASSP 2003, Hong Kong (2003)
Klimt, B., Yang, Y.: Introducing the Enron Corpus. In: Second Conference on Email and Anti-Spam, CEAS 2004 (2004)
Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay/ IEEE Transactions on Acoustics. Speech and Signal Processing ASSP-24, 320–327 (August 1976)
Kumar N.: Investigation of Silicon-Auditory Models and Generalization of Linear Discriminant Analysis for Improved Speech Recognition. PhD thesis, John Hopkins University, Baltimore (1997)
Burget, L.: Combination of Speech Features Using Smoothed Heteroscedastic Linear Discriminant Analysis. In: Proc. ICSLP 2004, Jeju island, KR, p. 4 (2004)
Messerschmitt, D., Hedberg, D., Cole, C., Haoui, A., Winship, P.: Digital voice echo canceller with a TMS32020. Appl. Rep. SPRA129, Texas Instruments (1989)
Spring 2004 (RT04S) Rich Transcription Meeting Recognition Evaluation Plan. NIST, US (2004), Available at, http://www.nist.gov/speech
Pfau, T., Ellis, D.P.W.: Hidden markov model based speech activity detection for the ICSI meeting project. In: Eurospeech 2001 (2001)
Schultz, T., Waibel, A., Bett, M., Metze, F., Pan, Y., Ries, K., Schaaf, T., Soltau, H., Westphal, M., Yu, H., Zechner, K.: The ISL Meeting Room System. In: Proc. of the Workshop on Hands-Free Speech Communication (HSC 2001), Kyoto (2001)
Stolcke, A., Wooters, C., Mirghafori, N., Pirinen, T., Bulyko, I., Gelbart, D., Graciarena, M., Otterson, S., Peskin, B., Ostendorf, M.: Progress in Meeting Recognition: The ICSI-SRI-UW Spring 2004 Evaluation System. In: NIST RT 2004 Workshop (2004)
The SRI Language Modelling Toolkit (SRILM). SRI international, California, http://www.speech.sri.com/projects/srilm
Woodland, P.C., Gales, M.J.F., Pye, D., Young, S.J.: Broadcast News Transcription using HTK. In: Proc. ICASSP 1997, Munich, pp. 719–722 (1997)
Wrigley, S., Brown, G., Wan, V., Renals, S.: Speech and crosstalk detection in multichannel audio. IEEE Trans. Speech & Audio Proc. 13(1), 84–91 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hain, T. et al. (2006). The Development of the AMI System for the Transcription of Speech in Meetings. In: Renals, S., Bengio, S. (eds) Machine Learning for Multimodal Interaction. MLMI 2005. Lecture Notes in Computer Science, vol 3869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11677482_30
Download citation
DOI: https://doi.org/10.1007/11677482_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32549-9
Online ISBN: 978-3-540-32550-5
eBook Packages: Computer ScienceComputer Science (R0)