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Abstract

Testing forms a critical part of the development process for large-scale
software, and there is growing need for automated tools that can read, repre-
sent, analyze, and transform the application’s source code to help carry out
testing tasks. However, the support required to compile applications written
in common general purpose languages is generally inaccessible to the testing
research community. In this paper, we report on an extensible, open-source
compiler infrastructure called ROSE, which is currently in development at
Lawrence Livermore National Laboratory. ROSE specifically targets develop-
ers who wish to build source-based tools that implement customized analyses
and optimizations for large-scale C, C++4, and Fortran90 scientific comput-
ing applications (on the order of a million lines of code or more). However,
much of this infrastructure can also be used to address problems in testing,
and ROSE is by design broadly accessible to those without a formal compiler
background. This paper details the interactions between testing of applica-
tions and the ways in which compiler technology can aid in the understanding
of those applications. We emphasize the particular aspects of ROSE, such
as support for the general analysis of whole programs, that are particularly
well-suited to the testing research community and the scale of the problems
that community solves.

1 Introduction

Testing software involves a number of formal processes (e.g., coverage analysis,
model checking, bug pattern analysis, code reviews, deducing errors), which require
accurate characterizations of the behavior of the program being tested. Deriving
such characterizations for modern large-scale applications increasingly requires au-
tomated tools that can read, represent, analyze, and possibly transform the source
code directly. These tools in turn often depend on a robust underlying compiler
infrastructure. In this paper, we present the ROSE source-to-source compiler in-
frastructure for C, C++, and Fortran90 [1-3]. We believe that ROSE is well-suited
to support testing tool development because it is easy to use, robust with respect
to large and complex applications, and preserves the structure of the input source
(including source file position and comment information), thereby enabling accurate
program characterization.

There are three aspects of ROSE particularly relevant to developers of program
testing and checking tools. First, the ROSE infrastructure can process complex,
large-scale, production-quality scientific applications on the order of a million lines
of code or more, which are being developed throughout the U.S. Department of
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Energy (DOE) laboratories. These applications use complex language and library
features, and therefore possess all of the qualities of general large-scale industrial
applications. Secondly, ROSE is designed to be accessible to developers who do not
necessarily have a formal compiler background, enabling a broad community of tool
builders to construct interesting tools quickly. Thirdly, ROSE is fully open-source,
modularly designed, and extensible. This aspect is important because current and
future static and dynamic analysis tools for testing have widely differing require-
ments of any underlying compiler infrastructure [4-6]. Collectively, these aspects
make ROSE a suitable framework within which to build a variety of source-code
analysis and transformation tools.

Automatic testing and defect (or bug) detection tools based on static analy-
sis compose a large and growing body of recent work whose effectiveness demands
accurate source code representation and analysis (see Section 5.2). For C++ in
particular, accurately representing programs is particularly challenging due to com-
plexity of both the language and commonly-used support libraries. The core ROSE
intermediate representation (IR), used to form the abstract syntax tree (AST), is
engineered to handle this complexity. Having been designed to support source-to-
source translation, it preserves all the program information required to precisely
reconstruct the original application in the same language (without language trans-
lation), and therefore represents the full type and structural representation of the
original source, with only minor renormalization. As a result, ROSE has all of the
information that may be required to support the kind of program analysis tech-
niques needed, for instance, to keep a given tool’s false positive reporting rates
low.

The remainder of this paper reviews the interface between compilation and test-
ing, with an emphasis on the ways in which compilers can support testing activities
(Section 2). We discuss the ROSE infrastructure itself, highlighting the components
of the infrastructure we believe will be particularly useful to testing tool builders
(Section 3). We present a concrete example of an on-going collaboration between
IBM and the ROSE project in the development of a testing tool for code cover-
age analysis, and discuss additional ideas for other testing tools that would require
compiler support and be useful to the testing of large scale application (Section 4).

2 How Compilers Can Support Testing

Testing comprises many specific activities that can make use of compilation tech-
niques. Although many useful tools can be built and used without using a full
compiler infrastructure, compilers can provide stronger and deeper analysis to im-
prove the quality of reports by, for instance, reducing the number of false positive
reports in a defect detection tool. In this section, we review a number of important
testing activities and show how a compiler infrastructure can assist.

2.1 Making programs fail

One important testing technique is to introduce instrumentation in a program in
order to force more exhaustive coverage of control flow paths during execution. One
example is ConTest, a tool developed at IBM, which introduces timing perturba-
tion in multi-threaded applications at testing-time [7]. These perturbations force
untested thread inter-leavings that might cause race conditions or deadlocks, for
example. We are using ROSE to introduce this kind of instrumentation in C and
C++ applications.

It may be possible to extend this idea further by building compiler-based tools
to inject inputs automatically at various program input points, to force failures
or perform security bug testing. Both the analysis to locate input points and the



transformation to inject data at such points can best be supported using compiler-
based tools that can generate correct code using an analysis of the context at an
input point in the application.

2.2 Reproducing bugs

Reproducing bugs generated from complex execution environments is the first step
in fixing them, and knowing all the steps that lead to the bug is critical in under-
standing the context for the bug. Post-mortem analysis can be helpful, but either
the support for this analysis is woven into the application by hand or automated
tools are developed to support such transformations and enable the generation of
a post-mortem trace. A compiler-based tool with full transformation capabilities
should be relatively easy to build so that it can record limited tracing informa-
tion and dump it to a file upon detection of internal faults. Such automated tools
then work with any product application during development and provide useful
information from failures in the field. This strategy accepts that bugs happen in
production software and, where possible, provides a mechanism to detect the root
cause or history of steps the led to uncovering the bug.

2.3 Extracting simplifying examples to deduce bugs

We can ease the process of deducing bugs by building an automated mechanism to
remove irrelevant code within proximity of where an error occurs. Such a technique
requires substantial compiler and program analysis support (dependence analysis)
and is part of a traditional compiler-based program slicing analysis. Recent work
within ROSE now supports reverse static slicing.

2.4 Bug pattern analysis

The goal in a bug pattern analysis is to find potential bugs by specifying a “pat-
tern” (e.g., a syntactic template) of code to be identified within the program source
of interest, and then searching for instances of the pattern. To operate robustly
against the numerous naming and language constructs, such matching should be
done directly on the type-checked AST. Full compiler support, with no loss of
source information, is required to perform this step robustly and with minimal false
positives. Compiler-based tools can be built to accept bug pattern specifications
(the development of which is a research issue) using grammar rules (a parser tech-
nology) and construct a pattern matching test on the AST of any input application.
There are numerous fast search algorithms that could be employed to implement
such tests on whole application projects via global analysis and with patterns of
quite arbitrary complexity.

Hovemeyer and Pugh observe that bugs are often due simply to misuse of subtle
or complex language and library features, and so they propose bug pattern anal-
ysis to identify these erroneous uses [5]. Although such features enable general
purpose languages to support a broad audience of developers, they may require
specialized knowledge to be used correctly. Indeed, individual development groups
often develop explicit style guides to control the language feature and library use.
Compiler-aided bug pattern analysis could be used to enforce such explicit guide-
lines, in addition to identifying actual incorrect usage.

2.5 Coverage analysis

The main technique for demonstrating that testing has been thorough is called
test coverage analysis [8]. Simply stated, the idea is to create, in some systematic



fashion, a large and comprehensive list of tasks and check that each task is covered
in the testing phase. Coverage can help in monitoring the quality of testing, assist
in creating tests for areas that have not been tested before, and help with forming
small yet comprehensive regression suites [9].

Instrumentation, in the source code or the object/byte code, is the foundation on
which coverage tools are implemented. Coverage tools for different languages (e.g.,
Java, C, C++) could have very similar front-ends to display the coverage results, but
need different compiler-based tools for instrumentation. We are not aware of any
easy-to-use coverage tool addressing the many different types of program coverage
for large C++ applications, as are available for other languages such as Java; we
are currently developing one based on ROSE.

2.6 Model checking

Model checking is a family of techniques, based on systematic and exhaustive state-
space exploration, for verifying program properties. Properties are typically ex-
pressed as invariants (predicates) or formulas in a temporal logic. Model checkers
are traditionally used to verify models of software expressed in special modeling
languages, which are simpler and higher-level than general-purpose programming
languages. Manually producing models of software is labor-intensive and error-
prone, so a significant amount of research is focused on abstraction techniques for
automatically or semi-automatically producing such models. We review related
work along these lines in Section 5.

To simplify the models, and fight the state space explosion, abstractions are used.
The abstractions used today are performed after the model has been transformed
into a net-list. New types of abstractions based on program transformation tech-
niques have been suggested [10]. In this way, program transformation techniques
can have a greater role in getting model checking to work with larger programs.

2.7 Code reviews

Code reviews commonly use check lists to help reviewers express and address com-
mon problems.! For example, an item on the check list might be, “Should an array
declaration containing a numerical value be replaced by a constant?” or perhaps,
“If an if-statement contains an assignment, should the assignment actually be an
equality comparison?” Though effective in practice, it can be very tedious to work
with check lists and compare them against the source code to find where a given
item is relevant. A better approach, suggested by Farchi [11], is to embed the review
questions from the check lists in the code as comments. This requires two phases:
one in which to check every item from the check list and see where it is reflected
in the code (static analysis), and the second in which to annotate the code with
the relevant comment (a simple code transformation). A compiler infrastructure is
well-suited to both tasks.

2.8 Capture and replay

Capture and replay tools enable test sessions to be recorded and then replayed.
The test sessions might be edited, and then replayed repeatedly or with several test
sessions running at the same time. Capture and reply is used in simulating load by
helping to create many clones, in regression by automating re-execution of a test,
and in debugging and testing of multi-threaded applications by helping to replay
the scenario in which the bug appears. Most capture and replay tools enable the
test sessions to be edited, parameterized, and generalized. Almost all of the tools

1E.g., see: http://ncmi.ben. tnc.edu/homes/lpeng/psp/code/checklist.html



have a facility to compare the expected results from a test run with those that
actually occur.

One of the ways to implement capture and replay is by wrapping all the func-
tions through which the applications communicate with the environment. Most
commonly, this is done for GUI applications to record all the interactions of wid-
gets. As another example, in scientific applications which use the Message Passing
Interface (MPI) communication library, all the MPI calls could be to be recorded
during the test execution; in the replay phase, the MPI calls would return the in-
formation collected during the testing session. It is expected that such techniques
could greatly simplify isolating classes of bugs common to large parallel applica-
tions which occur only on tens of thousands of processors. Automatic wrapping of
functions is another application for which a compiler framework is very suitable.

2.9 Identifying performance bugs

Of particular interest in high-performance scientific applications are performance
bugs. These bugs do not represent computation errors, but rather result in unex-
pected performance degradation. Patterns of some performance bugs in parallel
applications include synchronizing communication functions that can be identified
from their placement along control paths with debugging code (often as redun-
dant synchronization to simplify debugging) but without any use of their generated
outputs. Control dependence analysis can be used to identify such bugs, but this
analysis requires a full compiler support. Here the analysis of the AST must use the
semantics of the communication library (e.g., MPI, OpenMP) with the semantics
of the language constructs to automatically deduce such bugs.

2.10 Aiding in configuration testing

One of the biggest problems in testing commercial code is configuration testing, i.e.,
ensuring that the application will work not only on the test floor, but also at the
customer site, which may have another combination of hardware and software. A
configuration comprises many components, such as the type and number of proces-
sors, the type of communication hardware, the operating system and the compiler;
testing all combinations is impractical.

Different compilers or even different versions of a compiler can vary in how
they interact with a given application. For example, compilers often differ in what
language features are supported, or how a particular feature is implemented when
a language standard permits any freedom in the implementation. In addition, the
same compiler can generate very different code depending on what compiler flags
(e.g., to select optimization levels) are specified. As any tester in the field is aware,
the fact that the program worked with one compiler does not guarantee that it will
work with the same compiler using a different set of flags, with another version of
the same compiler, or with another compiler.

A compiler-based tool (or tools) could aid in compiler configuration testing. For
example, it could try different compilers or, for a single compiler, different compile-
time flags, and then report on configurations that lead to failures. As another
example, in cases where the compiler has freedom in how a language feature is
implemented, it could transform the program in different ways corresponding to
different implementation decisions, thereby testing the sensitivity of the application
to compiler implementation. Such a tool should help make the application more
maintainable over time and across customer sites, and reduce time spent debugging
compiler-related problems. We discuss specific related examples in Section 4.
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3 The ROSE Compiler Infrastructure

The ROSE Project is a U.S. Department of Energy (DOE) project to develop an
open-source compiler infrastructure for optimizing large-scale (on the order of a
million lines or more) DOE applications [1,2]. The ROSE framework enables tool
builders who do not necessarily have a compiler background to build their own
source-to-source optimizers. The current ROSE infrastructure can process C and
C++ applications, and we are extending it to support Fortran90 as part of on-
going collaborations with Rice University. For C and C++, ROSE fully supports
all language features, and preserves all source information for use in analysis, and the
rewrite system permits arbitrarily complex source-level transformations. Although
research in the ROSE project emphasizes performance optimization, ROSE contains
many of the components common to any compiler infrastructure, and is thus well-
suited to addressing problems in testing and debugging.

The ROSE infrastructure contains several components to build source-to-source
translators, shown as ovals in Figure 1. At the core of ROSE is the intermediate
representation (IR) of the abstract syntax tree (AST) for C and C++ programs,
SAGEIIL, which is based on Sage II and Sage++ [12]. A complete C++ front-end is
available that generates the SAGEIIT AST. The AST preserves the high-level C++
language representation so that no information about the structure of the original
application (including comments) is lost. A C++ back-end can be used to unparse
the AST and generate C++ code. These three components (IR, front-end, and
back-end), which all appear to the left of the dashed vertical line, compose the
basic ROSE infrastructure.

The user builds a “mid-end” to analyze or transform the AST. ROSE assists
mid-end construction by providing a number of mid-end components, shown to the
right of the dashed vertical line in Figure 1, including a extensible traversal mecha-
nism based on an attribute grammar (with fixed attribute evaluation for simplicity),
AST queries, transformation operators to restructure the AST, and predefined op-
timizations. ROSE also provides support for library annotations whether they be
contained in pragmas, comments, or separate annotation files. Finally, ROSE pro-
vides a number of additional packages (“add-ons”) for visualizing the AST, building
GUI interfaces to ROSE-based tools, etc. The dependencies among all the major
components form a directed acyclic graph, shown by arrows in Figure 1. Thus, a



tool built using ROSE can use just the subset of the ROSE infrastructure required.

3.1 Front-end

We use the Edison Design Group C and C++ front-end (EDG) [13] to parse C and
C++ programs. The EDG front-end generates an AST and performs a full type
evaluation of the C++4 program. The EDG AST is represented as a C data structure.
Within the ROSE front-end, an initial phase translates this C AST into a different
object-oriented abstract syntax tree, SAGEIII, based on Sage II and Sage++ [12];
additional phases in the ROSE front-end do further processing to handle template
details, attach comments and C preprocessor directives to AST nodes, and perform
AST verification tests. The EDG work is completely encapsulated as a binary which
allows its general distribution (as a binary library) with the rest of the ROSE source
code. ROSE source including EDG source is available to research groups who obtain
the free EDG research license. Alternative language specific front-ends are possible
within the ROSE front-end (e.g. Open64 front-end for Fortran90), abstracting the
details of using language specific front-ends (e.g. EDG front-end). SAGEIII is used
uniformly as the intermediate representation by the rest of the ROSE front-end
(downstream of the EDG front-end), the mid-end, and the back-end. Full template
support permits all templates to be instantiated, as required, in the AST. The AST
passed to the mid-end represents the program and all the header files included by
the program. The SAGEIII IR has approximately 240 types of IR nodes, as required
to fully represent the original structure of the application as an AST.

3.2 Mid-end

The mid-end permits the analysis and restructuring of the AST for performance im-
proving program transformations. Results of program analysis are accessible from
AST nodes. The AST processing mechanism computes inherited and synthesized
attributes on the AST. An AST restructuring operation specifies a location in the
AST where code should be inserted, deleted, or replaced. Transformation opera-
tors can be built using the AST processing mechanism in combination with AST
restructuring operations.

ROSE internally implements a number of forms of procedural and inter-procedural
analysis. Much of this work is in current development. ROSE currently includes
support for dependence, call graph, and control flow analysis.

To support whole-program analysis, ROSE has additional mechanisms to store
analysis results persistently in a database (e.g., SQLite), to store ASTs in binary
files, and to merge multiple ASTs from the compilation of different source files into
a single AST (without losing project, file and directory structure).

3.3 Back-end

The back-end unparses the AST and generates C++ source code. Either all included
(header) files or only source files may be unparsed; this feature is important when
transforming user-defined data types, for example, when adding generated methods.
Comments are attached to AST nodes (within the ROSE front-end) and unparsed
by the back-end. Full template handling is included with any transformed templates
output in the generated source code.

3.4 Features relevant to testing tools

Of the major components, the following features are particularly relevant to the
design and implementation of ROSE-based testing tools.



Full C++ information in AST. ROSE maintains an AST with all informa-
tion required to rebuild the original source code, including:

e comments and C Preprocessor (CPP) directive information;

e pragmas;

e all C++ constructs; the SAGEIII IR consists of 240 different types of nodes;
e templates, including all required instantiations of templates;

e source file positions for every statement, expression, and name;

e full constant expression trees and their constant-folded representations;

e all macro information, including what macros were expanded and where;

e floating point constants represented as both values and strings.

Whole program analysis. Recent supporting work in ROSE permits the
whole application (spanning hundreds of source files) to be merged into a single
AST held in memory. File I/O, supporting the AST, permits the fast reading
and writing of the AST to disk to support analysis tools. This work avoids the
recompilation of the application source to build the AST to support analysis or
simple queries of the AST by ROSE-based tools.

GUI interface support for rapid tool development. ROSE supports
QRose by Gabriel Coutinho at Imperial College, which implements a Qt interface
for ROSE. QRose greatly simplifies the development of specialized analysis tools to
select or present the AST or source code.

Robustness. ROSE has been tested on large-scale, production-quality, C++
scientific applications on the order of a millions lines of code. These applications
make extensive use of C++ language and library features, including templates, the
Standard Template Library (STL), and the Boost library, to name a few.

AST visualization tools. ROSE contains a number of graphical and non-
graphical tools for visualizing the AST, which is useful when debugging ROSE-based
tools or when trying to understand details of program structure.

Attribute-based tree traversals. ROSE has simple interfaces for traversing
the AST and propagating context information through inherited and synthesized
attributes. These interfaces are consistent among traversal and rewrite systems.

4 Examples of Testing Using ROSE

In this section, we show the interplay between compilers (specifically, ROSE) and
testing through a series of specific concrete examples. The first three represent on-
going research and development work on building tools for automated testing and
debugging, while the fourth relates a number of anecdotal examples to motivate the
need for configuration testing of compilers as discussed in Section 2.10.

4.1 Coverage analysis and testing of multi-threaded code

We are developing tools to address problems of code coverage and automated bug
testing of multi-threaded for C and C++ applications, in collaboration with IBM,
Haifa. In particular, we are connecting ROSE to the IBM ConTest tools developed
originally for Java [7]. Our ROSE-based tool carries out three transformation tasks
needed to interface to the ConTest tools:

1. Changing specific function names and their arguments



2. Instrumenting functions and conditions (blocks) for coverage
3. Instrumenting shared variables for coverage

In each case, the ROSE-based tool modifies the AST, and then outputs source code
corresponding to the modified AST. Each source-to-source translation phase was
supported by less than 50 lines of code and can be used to operate on applications
of any size, including whole applications at once using the whole program analysis
and transformation mechanisms within ROSE. Such transformations take seconds
on hundreds of thousands of lines of code.

4.2 Automatic checking of measurement units

An important source of errors in scientific applications are misuse of units of mea-
surements, such as failing to convert a value in ‘miles’ to ‘meters’ before combining
it with another value in ‘meters’ within some computation. OSPREY is a type
analysis-based tool for soundly and automatically detecting possible measurement
unit errors in C programs, developed by Zhendong Su and Lingxiao Jiang at the
University of California, Davis [14]. We are collaborating with Su and Jiang to
extend this work to C++ programs.

Prior work on OSPREY has shown that type inference mechanisms are an effec-
tive way to detect such errors. To be most effective, users need to introduce some
lightweight annotations, in the form of user-defined type qualifiers, at a few places
in the code to identify what variables have certain units. The type inference mech-
anism propagates this type information throughout the entire program to detect
inconsistent usage. In ROSE, the type qualifiers can be expressed as comments or
macros, since all comments and source file position information is preserved in the
AST. Furthermore, the technique requires significant compiler infrastructure and
program analysis support (inter-procedural control flow analysis and alias analy-
sis).

4.3 Symbolic performance prediction

Another application demonstrating the use of ROSE is in the identification of per-
formance bugs. In particular, we compute symbolic counts of program properties
within loops and across function boundaries. The properties of interest include ba-
sic operation counts, numbers of memory accesses and function calls, and counts
of global and point-to-point communication, among others. Our fully automated
implementation uses basic traversals of the AST to gather raw symbolic terms,
combined with calls to Maple, a popular commercial symbolic equation evaluation
tool, to evaluate and to simplify sums and functions of these terms symbolically.
Evaluated counts can then be inserted at various places in the AST as attached
comments, so that the unparsed code includes comments indicating the symbolic
counts. In connecting ROSE to Maple, we can thus make the performance of ar-
bitrarily well-hidden high-level object-oriented abstractions transparent. Doing so
permits the inspection of numerous aspects of program and subprogram complexity
immediately obvious within general program documentation, desk-checking evalu-
ation, or within the code review process.

4.4 Compiler-configuration testing

The main impact on the cost of a bug, which includes testing and debugging time,
is the time between the time the bug was introduced and the time it was found [15].
As a program evolves through many versions, so does the compiler, and a future
release may use different compiler or compiler options (e.g., optimization level). In



such cases, it is important to check the program under various options to detect
if it is sensitive to specific compiler options or versions, and then either remove or
carefully document such dependencies.

We encountered this particular problem recently in one of our projects when it
stopped working for a client. It turned out that the client moved to a new compiler
version that by default performed inlining, which changed location of objects in the
heap, and caused our pointers to stop working. Automated “compiler-sensitivity
testing” could have greatly simplified debugging. Understanding the root cause in
the field was very difficult as it required copying the entire clients environment.

Another potential source of problems is a dependence of an application on a par-
ticular compiler’s implementation of some language construct. There are a number
of examples for C++ [16]:

1. Casts are sometimes required (explicit) and sometimes optional (implicit) with
many compilers (C and C++ in particular). It is common for the rules for
explicit casts to be relaxed to make it easier to compile older code. Across
multiple compilers which casts are required to be explicit vs. implicit can
result in non-portable code, and sometime a bug.

2. The order in which static variables are initialized (especially for static objects)
is compiler-dependent, and notoriously different for each compiler. Since the
language does not specify an order, applications should seek to reduce depen-
dences on a particular order.

3. Infrequently used language features are often a problem, as the level of support
for such features can vary greatly across compilers. These features include
variadic macros, compound literals, and case ranges.

4. The compiler has some degree of freedom in choosing how fields of a structure
or class are aligned, depending on how access-privilege specifies are placed. In

particular,
class X {
public: int x;
int y;
};

is not the same as:

class X {
public: int x;
public: int y;
s

The first example forces the layout to be sequential in x and y, whereas the
second example permits the compiler to reorder the field values. This freedom
is not likely implemented in many compilers, but can be an issue in both large
scientific and systems applications.

In all of these cases, it can be very difficult to track down the problem if an ap-
plication somehow depends on a particular implementation. We are developing
support within ROSE through bug pattern analysis tools that can help identify
such implementation dependencies.
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5 Related Work

We review related work in the general area of alternative open compiler infras-
tructures for C++, and place our current research and development in the context
of existing static defect detection tools. We also include a brief discussion of a
developer-centric, non-analysis based technique that extends aspect-oriented pro-
gramming for testing. The following discussion emphasizes source-level tools, and
we do not mention related work on tools that operate on binaries, or the important
class of dynamic testing tools.

5.1 Open compiler infrastructures for C++4

Although there are a number of available open-source compiler infrastructures for
C, Fortran, and Java [17, 18], there are relatively few for C++, including g++ [19],
OpenC++ [20], MPC++ [21], and Simplicissimus [22]. ELSA is a robust C++
front-end based on the Elkhound GLR parser generator [23], but the IR is best-
suited to analysis (and not source-level transformation) tasks. ROSE could use
ELsA instead of EDG with appropriate IR translations, either directly or through
some external C++ AST format such as IPR/XPR [24]. Like several of these
infrastructures, we are developing ROSE to handle realistic large-scale (million lines
or more) applications in use throughout the DOE laboratories. We distinguish
ROSE by its emphasis on ease-of-use in building compiler-based tools for users who
do not necessarily have a formal compiler background.

5.2 Automatic, static defect detection

There is a large and rapidly growing body of work on compile-time automatic soft-
ware defect detection (i.e., bug detection) systems. This research explores tech-
niques that trade-off soundness (i.e., finding all bugs), completeness (reporting no
false positive errors), time and space complexity, and level of user interaction (i.e.,
the degree to which user is required to provide manual annotations). Below, we
provide just a sample of related projects, roughly grouped into four classes: bug
pattern detectors, compiler-based program analyzers, model checkers, and formal
verifiers based on automated theorem provers. (This categorization is somewhat
artificial as many of the tools employ hybrid techniques.) Since no single class of
techniques is ideal for all bugs of interest, our aim in ROSE is to provide an exten-
sible, open infrastructure to support external research groups building equivalent
tools for C++.

Bug pattern detectors. This class of tools uses a minimal, if any, amount of
program analysis and user-supplied annotation. Bug pattern tools are particularly
effective in finding errors in language feature and library API usage, but may also
support diverse testing activities such as code reviews [11]. The classical example is
the C LINT tool [25], which uses only lexical analysis of the source. Recent work on
Splint (formerly, LClint) extends the LINT approach with lightweight annotations
and basic program analysis for detecting potential security flaws [26]. More recently,
Hovemeyer and Pugh have implemented the FINDBuGs framework for finding a
variety of bug patterns in Java applications with basic program analysis, observing
that many errors are due to a misunderstanding of language or API features [5].
This particular observation certainly applies to C++ applications, where many
usage rules are well-documented [27], with some current progress toward automatic
identification of STL usage errors (see STLlint, below). C++ in particular has
additional challenges since the resolution of overloaded operators requires relatively
complex type evaluation which can require more sophisticated compiler support.

Compiler-based static analyzers. Compared to bug pattern detectors, tools
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in this class use deeper analysis methods (e.g., context-sensitive and flow-sensitive
inter-procedural analysis for deadlock detection [28]) to improve analysis soundness
while keeping the annotation burden small.

Type checkers constitute an important subclass, since a number of defect detec-
tion problems can be mapped to equivalent type analysis problems. The CQUAL
tool uses constraint-based type inference to propagate user-specified type qualifiers
to detect Y2K bugs, user- and kernel-space trust errors, correct usage of locks, and
format string vulnerabilities, among others, in C programs [29]. CQUAL analyses
are sound, but require some user annotation for best results. Work with Zhendong
Su and Lingxiao Jiang are integrating these ideas into ROSE via OSPREY, a type
qualifier-based system for checking the usage of scientific measurement units [14].

Researchers have used or extended classical program analysis in a variety of
ways to create customized, lightweight static analyzers. This body of work includes
meta-level compilation (MC[30] and the commercial version that became a basis for
Coverity Inc.[31]), symbolic execution techniques as embodied in PREfix [32,33]
and STLlint [34], property simulation as in ESP [35], and reduction of program
property checking to boolean satisfiability [36,37]. Another interesting example in
this class of tools is the highly regarded commercial tool, JTest, which combines
static and dynamic (e.g., coverage, test execution) analysis techniques [38]. The
ROSE infrastructure supports the development of similar tools for C++ by provid-
ing an interface to a robust C++ front-end, and we (and others) are extending the
available analysis in ROSE through direct implementation as well as interfacing to
external analysis tools like OpenAnalysis [39].

Software model checkers. We consider, as members of this class, tools which
explore the state-space of some model of the program. These tools include FeaVer for
C programs [40], the Java PathFinder [41, 42], Bandera (and Bogor) for Java [43, 44],
MOPS for C [45], SLAM for C [46], and BLAST for C [47]. These tools generally
employ program analysis or theorem provers to extract a model, and then apply
model checkers to verify the desired properties of the model. It is also possible to
apply model checking in some sense directly to the source, as suggested in work on
VeriSoft [48].

Although model checkers constitute powerful tools for detecting defects, they
can be challenging to implement effectively for at least two reasons. First, their
effectiveness is limited by how accurately the abstract models represent the source
code. Secondly, they may require whole-program analysis. In ROSE, we have
tried to address the first issue by maintaining an accurate representation of input
program, including all high-level abstractions and their uses, thereby potentially
enabling accurate mappings of the C++ source code to models. To address the
second, we provide support for whole-program analysis, as outlined in Section 3.

Formal verifiers. Verification tools such as ESC [49], which are based on auto-
mated theorem provers, are extremely powerful but typically require users to provide
more annotations than with the above approaches. ESC specifically was originally
developed for Modula-3 but has been recently extended to apply to Java. ROSE
preserves all comments and represents C/C++ pragmas directly, thus providing a
way to express these annotations directly in the source.

5.3 Aspect-oriented testing

Aspect-oriented programming (AOP) permits the creation of generic instrumenta-
tion [50]. The central idea in AOP is that although the hierarchical modularity
mechanisms of object-oriented languages are useful, they are unable to modularize
all concerns of interest in complex systems. In the implementation of any complex
system, there will be concerns that inherently cross-cut the natural modularity of
the rest of the implementation. AOP provides language mechanisms that explicitly
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capture cross-cutting structures. This makes it possible to program cross-cutting
concerns in a modular way, and achieve the usual benefits of improved modular-
ity [51]. The most common use of AOP is to implement logging.

However, because AOP frameworks were designed with simplicity of mind, they
do not permit context-dependent instrumentation. For example, one may use as-
pects to insert instrumentation at the beginning of all methods (possibly of a specific
type), but cannot limit the instrumentation based on some attribute of the method.
However, AOP has more recently also been shown to be useful in testing [52, 53].

6 Conclusions

The need for an open, extensible compiler infrastructure for testing is motivated
simultaneously by (1) the desire to automate or semi-automate the many kinds of
activities required for effective testing, (2) the fact that each activity has its own
unique analysis and transformation requirements from a compiler infrastructure,
and (3) that each testing team will require its own set of customized tools. Our
goals in developing ROSE are to facilitate the development of all these kinds of
existing and future testing tools by providing a robust, modular, complete, and
easy-to-use foundational infrastructure. We are currently pursuing a number of
different projects to support testing specifically, as discussed in Section 4. In both
our current and future work, we are extending the analysis and transformation
capabilities of ROSE, in part by interfacing ROSE with external tools to leverage
their capabilities and also working with other research groups.
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