Abstract
The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help answer questions like: ’Are we actually dealing with a convolutive mixture?’. We try to answer this question for EEG data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anemüller, J., Sejnowski, T., Makeig, S.: Complex independent component analysis of frequency-domain eeg data. Neural Networks 16, 1313–1325 (2003)
Attias, H., Schreiner, C.E.: Blind source separation and deconvolution: The dynamic component analysis algorithm. Neural Computation 10(6), 1373–1424 (1998)
Bell, A.J., Sejnowski, T.: An information maximisation approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)
Dyrholm, M., Hansen, L.K.: CICAAR: Convolutive ICA with an auto-regressive inverse model. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 594–601. Springer, Heidelberg (2004)
Hansen, L.K., Larsen, J., Kolenda, T.: Blind detection of independent dynamic components. In: Proc. IEEE ICASSP 2001, vol. 5, pp. 3197–3200 (2001)
Højen-Sørensen, P., Hansen, L.K., Winther, O.: Mean field implementation of bayesian ICA. In: Proceedings of 3rd International Conference on Independent Component Analysis and Blind Signal Separation (ICA 2001). Institute of Neural Computation (2001)
Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Chichester (2001)
Kolenda, T., Hansen, L., Larsen, J.: Signal detection using ICA: application to chat room topic spotting. In: Lee, Jung, Makeig, Sejnowski (eds.) Proc. of the Third International Conference on Independent Component Analysis and Signal Separation (ICA 2001), San Diego, CA, pp. 540–545 (2001)
Makeig, S., Bell, A.J., Jung, T.-P., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. Advances in Neural Information Processing Systems 8, 145–151 (1996)
Makeig, S., Delorme, A., Westerfield, M., Jung, T.-P., Townsend, J., Courchesne, E., Sejnowski, T.J.: Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biology (2004)
Parra, L., Spence, C., Vries, B.: Convolutive source separation and signal modeling with ML. In: International Symposioum on Inteligent Systems (1997)
Pearlmutter, B.A., Parra, L.C.: Maximum likelihood blind source separation: A context-sensitive generalization of ICA. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, p. 613. The MIT Press, Cambridge (1997)
Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dyrholm, M., Makeig, S., Hansen, L.K. (2006). Model Structure Selection in Convolutive Mixtures. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_10
Download citation
DOI: https://doi.org/10.1007/11679363_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32630-4
Online ISBN: 978-3-540-32631-1
eBook Packages: Computer ScienceComputer Science (R0)