Skip to main content

Analysis of Feasible Solutions of the ICA Problem Under the One-Bit-Matching Condition

  • Conference paper
Independent Component Analysis and Blind Signal Separation (ICA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3889))

Abstract

The one-bit-matching conjecture for independent component analysis (ICA) has been widely believed in the ICA community. Theoretically, it has been proved that under certain regular assumptions, the global maximum of a simplified objective function derived from the maximum likelihood or minimum mutual information criterion under the one-bit-matching condition corresponds to a feasible solution of the ICA problem, and also that all the local maxima of the objective function correspond to the feasible solutions of the ICA problem in the two-source square mixing setting. This paper further studies the one-bit-matching conjecture along this direction, and we prove that under the one-bit-matching condition there always exist many local maxima of the objective function that correspond to the stable feasible solutions of the ICA problem in the general case; moreover, in ceratin cases there also exist some local minima of the objective function that correspond to the stable feasible solutions of the ICA problem with mixed super- and sub-Gaussian sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tong, L., Inouye, Y., Liu, R.: Waveform-preserving blind estimation of multiple independent sources. IEEE Trans. Signal Processing 41(7), 2461–2470 (1993)

    Article  MATH  Google Scholar 

  2. Comon, P.: Independent component analysis–a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  3. Delfosse, N., Loubaton, P.: Adaptive blind separation of independent sources: A deflation approach. Signal Processing 45, 59–83 (1995)

    Article  MATH  Google Scholar 

  4. Bell, A., Sejnowski, T.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  5. Amari, S.I., Cichocki, A., Yang, H.: A new learning algorithm for blind separation of sources. Advances in Neural Information Processing Systems 8, 757–763 (1996)

    Google Scholar 

  6. Oja, E.: ICA learning rules: stationarity,stability, and sigmoids. In: Fyfe, C. (ed.) Proc. of Int. ICSC Workshop on Independence and Artificial Neural Networks, pp. 97–103 (1998)

    Google Scholar 

  7. Cardoso, J.F.: Infomax and maximum likelihood for source separation. IEEE Signal Processing Letters 4, 112–114 (1999)

    Article  Google Scholar 

  8. Xu, L., Cheung, C.C., Yang, H., Amari, S.I.: Independent component analysis by the information-theoretic approach with mixture of density. In: Proc. 1997 IEEE Int. Joint Conf. Neural Networks, III, pp. 1821–1826 (1997)

    Google Scholar 

  9. Xu, L., Cheung, C.C., Amari, S.I.: Learned parametric mixture based ICA algorithm. Neurocomputing 22, 69–80 (1998)

    Article  MATH  Google Scholar 

  10. Xu, L., Cheung, C.C., Amari, S.I.: Furthere results on nonlinearity and separation capability of a liner mixture ICA method and learned LPM. In: Fyfe, C. (ed.) Proc. I&ANN 1998, pp. 39–45 (1998)

    Google Scholar 

  11. Girolami, M.: An alternative perspective on adaptive independent component analysis algorithms. Neural Computation 10, 2103–2114 (1998)

    Article  Google Scholar 

  12. Everson, R., Roberts, S.: Independent component analysis: A flexible nonlinearity and decorrelating manifold approach. Neural Computation 11, 1957–1983 (1999)

    Article  Google Scholar 

  13. Welling, M., Weber, M.: A constrained EM algorithm for independent component analysis. Neural Computation 13, 677–689 (2001)

    Article  MATH  Google Scholar 

  14. Gao, D., Ma, J., Cheng, Q.: An alternative switching criterion for independent component analysis (ICA). Neurocomputing 68, 267–272 (2005)

    Article  Google Scholar 

  15. Cheung, C.C., Xu, L.: Some global and local convergence analysis on the information-theoretic independent component analysis approach. Neurocomputing 30, 79–102 (2000)

    Article  Google Scholar 

  16. Liu, Z.Y., Chiu, K.C., Xu, L.: One-bit-matching conjecture for independent component analysis. Neural Computation 16, 383–399 (2004)

    Article  MATH  Google Scholar 

  17. Ma, J., Liu, Z., Xu, L.: A further result on the ICA one-bit-matching conjecture. Neural Computation 17, 331–334 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill Book Company, New York (1972)

    MATH  Google Scholar 

  19. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, J., Chen, Z., Amari, Si. (2006). Analysis of Feasible Solutions of the ICA Problem Under the One-Bit-Matching Condition. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_104

Download citation

  • DOI: https://doi.org/10.1007/11679363_104

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32630-4

  • Online ISBN: 978-3-540-32631-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics