Kernel Principal Components Are Maximum
Entropy Projections*

Anténio R.C. Paiva, Jian-Wu Xu, and José C. Principe

Computational NeuroEngineering Laboratory,
Dept. of Electrical and Computer Engineering,
University of Florida, Gainesville, FL. 32611, USA
{arpaiva, jianwu, principe}@cnel.ufl.edu

Abstract. Principal Component Analysis (PCA) is a very well known
statistical tool. KERNEL PCA is a nonlinear extension to PCA based
on the kernel paradigm. In this paper we characterize the projections
found by KERNEL PCA from a information theoretic perspective. We
prove that KERNEL PCA provides optimum entropy projections in the
input space when the Gaussian kernel is used for the mapping and a sam-
ple estimate of Renyi’s entropy based on the Parzen window method is
employed. The information theoretic interpretation motivates the choice
and specifices the kernel used for the transformation to feature space.

Keywords: Kernel PCA, information-theoretic learning, entropy
projections.

1 Introduction

Many real world problems deal with a very high number of signals not all equally
important for the application. Therefore, a simplification of the problem is often
desirable, and sometimes imperative. The goal is to obtain a smaller number of
projections that describes the data and minimize the loss of information in the
projection. A very well known statistical tool for data projection is Principal
Component Analysis (PCA) [1]. PCA searches for the projections of maximum
variance. If the process that generated the data is Gaussian this projection is
optimum. This is because Gaussian processes are totally described by their mean
and variance. The same is not true, however, for other data distributions.

PCA can be formulated in terms of inner (or dot) products. Following a recent
trend, a kernel-based extension named KERNEL PCA was proposed by Schoélkopf
et al. [2,3]. In fact, it has been pointed out that any algorithm that can be formu-
lated using only dot products can be immediately kernelized, yielding an easily
trackable nonlinear formulation. KERNEL PCA performs PCA in feature space.
It has been verified, that by selecting the kernel appropriately, it is possible to
find a projection in the input space that is more descriptive of the data, even
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if the data is described by a non-Gaussian distribution. Recently, Williams [4]
pointed out that KERNEL PCA algorithm can be interpreted as a form of multi-
dimensional scaling provided that the kernel function x(x,y) is isotropic, i.e. it
depends only on || x — y ||. This connection provides a metric multidimensional
scaling algorithm to solve KERNEL PCA instead of a eigendecomposition of the
Gram matrix. Bengio et al. [5] pointed out the link between KERNEL PCA and
spectral embedding. The direct relation resides in a more general learning prob-
lem: learning the principal eigenfunctions of operators defined from a kernel and
the unknown data-generating density function.

In this paper we take an information-theoretic perspective to KERNEL PCA.
We show a direct connection between KERNEL PCA and maximization of en-
tropy, and prove mathematically why this happens. As Bach and Jordan [6]
pointed out, this insight is also highly valuable to ICA, since ICA can be viewed
as a generalization of PCA, one that depends on high order moments. Although
a relation between KERNEL PCA and ICA is not made here, the demonstration
we make inherently connects both concepts.

2 Kernel PCA

Let x;, i =1,...,M be a set of M sample vectors in a N-dimensional (input)
space, and ®(-) : RN — F be the mapping to the feature space. KERNEL PCA
is simply PCA applied in feature space. Hence, the goal of KERNEL PCA is to
find variance maximizing projections of the vectors ®(x;). If the vectors ®(x;),
i = 1,..., M have zero mean KERNEL PCA can be stated as the following
optimization problem: we wish to maximize the cost function

J(w) = E{(w"®(x))’}. (1)

Because the above equation depends on the norm of the projection vector, the
Lagrange multiplier method is used to force the vectors to unit norm. Thus, the
following cost function is maximized instead

J(w)=F {(WT(I’(X))Q} —AwTw —1)
:wTE{i’(x)i’(x)T}w—)\(wTw— 1). 2)

Notice that C = E {fb(x)fb(x)T} is the covariance matrix of the vectors in the

feature space. The solution of (2) is found by solving
Cw = \w. (3)

As for PCA, the solutions to this equation are well known to be the eigenvectors
and eigenvalues of the covariance matrix, although in this situation computed in
feature space. Solving this problem directly in feature space is very complicated.
Fortunately, this equation can be restated in terms of dot products, for which a
solution can be easily found, as we shown next.



848 A.R.C. Paiva, J.-W. Xu, and J.C. Principe

As all solutions w of (3) for which A > 0 lie in the span of the transformed
vectors we can write,

M
W= o®(x;). (4)
i=1

Also, the covariance matrix of the transformed vectors can be estimated from
the vectors as

C—1M<I> ®(x;)7 5
_M; (x;)@(x:)" - (5)

Returning to the problem of the eigendecomposition of the covariance matrix of
the feature vectors, we have that (3) is equivalent to

(P(xk), Cw) = M (P(x), W), forall k=1,..., M. (6)

Then, substituting (4) and (5) yields

1 M M M
i D @ (xp)®(xi) D ;@ (x)B(x;) =AY 0 T (x) B (x;),
i—1 j=1 J=1

forall k=1,...,M. (7)

Defining the Gram matrix K, as K;; = k(x;,%x;) = (®(x;), ®(x;)), 4,j =

1,..., M, we can rewrite (7) in matrix form as
K%a = M)Ka. (8)
where a = [a1, ..., a]T. This equation has solutions found by the eigendecom-

position of K but, most important of all, is that tells us that the eigenvectors
of the Gram Matrix are the coefficients the decomposition of the eigenvectors of
C. Consequently, the projection of a feature vector is

M
(®(x),w;) =) af (B(x), ®(x:)), (9)
i=1
where w; denotes the j-th positive eigenvector of C.

3 Information Theoretic Concepts

In this section we briefly introduce some of the information theoretic core con-
cepts needed to later establish its connection to KERNEL PCA.

The key information measure in information theoretic applications is Rényi’s
quadratic entropy [7], defined for the pdf, f(x), of a random variable X as

() = —tog [ P00 = —log B{()}. (10)
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The argument of the logarithm,
x)= [ Feods=E{5(0), (1)

is what it is called the information potential (IP), so named due to a similarity
with the potential energy field in physics [8]. Notice that the information poten-
tial depends directly on the pdf of X, which is normally unknown. Luckily, we
can circumvent the explicit estimation of the pdf because entropy is a “moment”
of the pdf. In fact, using the Parzen window method [9], written as

N

1

NZHO‘/ﬁ(X7 Xi)7 (12)
i=1

where / ﬁ(x, x;) is the estimation kernel, commonly taken as a Gaussian,with

bandwidth o/v/2, although other kernels may be used [9]. This kernel must be a
valid pdf, i.e. be positive and integrate to one. Then, substituting this estimator
in the IP we do not need to explicitly compute the integral because the integral of
a product of Gaussians is a Gaussian (with twice the variance), yielding directly

V(x) = ﬁzzng(xi,xj). (13)

Although the information potential as given by the previous equation is an ap-
proximation, this is only to the extent of the error in the pdf estimation. In other
words, if f(x) from (12) equals the true pdf then the estimator given by (13)
also has no error.

For any Mercer kernel, one can employ Mercer’s theorem,

Ro (X Xj) = (B(xi), @(x;)) , (14)

to rewrite the information potential of (13) as [10]

N N 1 N
ZZ (), @(x,) < Zéxz NZ<I><XJ->> = s |
i=1 j=1 j=1

(15)
where pg is the mean of the vectors in feature space. That is, the information
potential is the squared norm of the mean vector of the data in kernel space. This
equation shows exactly the duality existing between the information potential
and second order statistics computed in feature space on the transformed data.

Finally, we remark that extremization (maximization or minimization) of
H(x) can be alternatively achieved by extremizing the information potential
in the opposite direction, because of the minus signs in (10) and the fact that
the logarithm is a monotonic function. Hence, if we wish to maximize the entropy
we can simply minimize the information potential. Conversely, maximizing the
information potential yields minimum entropy.
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4 Characterization of Kernel PCA Projections in Input
Space

In section 2 explained the fundamentals of KERNEL PCA. The most important
point was to explicitly formulate KERNEL PCA as a tool for finding projections
of maximum variance in feature space, as (2) states. On the other hand, (15)
shows that a relationship between second order statistics in the feature space
and quadratic Renyi’s entropy in the input space exists.

Let us analyze in detail what is the meaning of the variance of the feature
vectors. The variance of the feature vectors is

var(®(x)) = E {‘I’(X)T‘I)(X)} — E{‘I’(X)}T E{®(x)}. (16)
Expressing the inner product as a kernel operation and using identity (15),
var(®(x)) = E{r(x,x)} — V(x). (17)

The quantity F {k(x,x)} is the information potential at the origin, V(0). This
is a constant value representing the zero entropy situation, for which the maxi-
mum value of the information potential is achieved. From (17), maximizing the
variance of the feature vectors corresponds therefore to the minimization of the
information potential, V' (x), in the input space.

The fact that KERNEL PCA finds projections that minimize the information
potential in input space, together with the remarks made in section 3 on the
relationship between the information potential and entropy prove the statement
that kernel principal components are maximum entropy projections. Since en-
tropy is associated with information [11], maximum entropy projections are the
directions more informative to explore for machine learning algorithms. Further-
more, notice that at no point in our proof of this connection an assumption of a
specific kernel was made, other than it has to be able to accurately provide an
estimation to the input sample vectors pdf.

5 Example

In this section we illustrate what was just proved in the previous section. We
will use a small example, in which the goal is to obtain the maximum informa-
tive projection of a mixture of two Gaussian distributions. The overall pdf is
specified by

p0) = 5 (NG o, ) + NG iz, B2)) (13)

where N(x, i, 3) is a Gaussian distribution with mean p and covariance matrix
3. In this case,

-1 1 0 1 0.1 0
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For reference, we show the contours of constant projection (constant eigen-
value) of standard PCA in Fig. 1(a). Recall that the projection is made along a
line orthogonal to the contours. The contours for KERNEL PCA using a Gaus-
sian kernel are a little more difficult to construct, since KERNEL PCA has as
many principal directions as the size of the Gram matrix. In exploratory data
analysis, what matters are the directions in the input space, and it is not clear
how they are related. In this case we decided to plot in Fig. 1(b)-(c) the direc-
tion corresponding to the maximum eigenvalue in kernel space, using a kernel
size (variance) 0 = 1 and 02 = 10, respectively. Note how the contours bend
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Data
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3
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Fig. 1. Contours of constant projection and the pdf for the example of Sec. 5. From
(a) to (d), the contours are for standard PCA, KERNEL PCA with o? = 1, KERNEL
PCA with % = 10, and MLP output.
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themselves and wrap around the distribution to make the projection as uniform
as possible. Also, when the kernel size is increased (Fig. 1(c)) the contours tend
to those of standard PCA (Fig. 1(a)).

With our information theoretic interpretation there is another alternative to cre-
ate the maximum entropy direction that uses always the input space dimension.
In fact, we can train with backpropagation a MLP with architecture 2-4-1 (2 in-
puts, 4 hidden PEs and 1 output PE) and instead of using the conventional MSE
criterion, substitute it for the maximum entropy cost [8]. The MLP was trained for
200 epochs to minimize the information potential of the outputs, as evaluated by
(13), with a kernel size of 0.2. The nonlinearity used at the PEs is the hyperbolic
tangent function. The contours of the surface generated by the neural network are
shown in Fig. 1(d). The contours are obviously different from the ones for KERNEL
PCA since the basis functions are different and the method uses gradient descent
learning, but is remarkable how they bend so that a projection to a line orthogonal
to these contours would have maximum entropy. Although in this example we are
only interested in the first projection, the neural network framework can also be
used to obtain as many projections as needed up to the dimensionality of the space
by using concepts of orthogonalizing the outputs [12].

6 Conclusions

KERNEL PCA was proposed as an nonlinear extension of PCA. Despite this sim-
ple motivation, in this paper we prove that the principal components determined
by KERNEL PCA provides optimum entropy mappings when the Gaussian ker-
nel is used both for the mapping and in Parzen window pdf estimation method.
The use of the Gaussian kernel is not restrictive since the same result holds for
any Mercer theorem, although the connection between the pdf estimation and
IP becomes more difficult to express. This motivates the choice for the kernel
and, considering the implicit pdf estimation, how to select its parameters.

The main contribution of this work is the understanding of the underlying
properties of the projections found by KERNEL PCA in feature space. This
insight becomes especially important if we intend to use KERNEL PCA as a data
exploratory tool. Notice how the projections of KERNEL PCA and maximum
entropy achieve fundamentally the same result, although they are different due
to the differences in the basis functions used (Gaussians in kernel methods, ridge
functions in the MLP). This is a very interesting result given that KERNEL PCA
has an analytical solution, while the MLP requires adaptation. Yet, the KERNEL
PCA looses the intuition of the meaning of PCA in the input space. Indeed,
Scholkopf et al. [2] mention about the possibility of finding more eigenvectors
than the dimension of the input space which is clearly misleading in data analysis.
The maximum entropy projection brings the insight that effectively KERNEL
PCA is projecting the data in informative directions using local bases. Therefore,
KERNEL PCA will require many such projections to cover the full data space.
However, it is still not clear how to distinguish a minor component from a major
component since the bases are local.
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