Abstract
The FastICA algorithm can be considered as a selfmap on a manifold. It turns out that FastICA is a scalar shifted version of an algorithm recently proposed. We put these algorithms into a dynamical system framework. The local convergence properties are investigated subject to an ideal ICA model. The analysis is very similar to the wellknown case in numerical linear algebra when studying power iterations versus Rayleigh quotient iteration.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Comon, P.: Independent component analysis, a new concept? Signal Processing 36, 287–314 (1994)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)
Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)
Hüper, K.: A Dynamical System Approach to Matrix Eigenvalue Algorithms. In: Mathematical Systems Theory in Biology, Communications, Computation. The IMA Volumes in Mathematics and its Applications, vol. 134, pp. 257–274. Springer, New York (2003)
Regalia, P., Kofidis, E.: Monotonic convergence of fixed-point algorithms for ICA. IEEE Transactions on Neural Networks 14, 943–949 (2003)
Hüper, K., Shen, H., Seghouane, A.-K.: Local convergence properties of FastICA and some generalisations. In: IEEE-ICASSP 2006, Toulouse, France (2006) (accepted)
Hüper, K., Shen, H., Seghouane, A.-K.: Geometric optimisation and FastICA algorithms. In: Contribution to Mini-Symposium: Geometric Optimisation in System and Control I/II The 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan (2006) (accepted)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shen, H., Hüper, K. (2006). Local Convergence Analysis of FastICA. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_111
Download citation
DOI: https://doi.org/10.1007/11679363_111
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32630-4
Online ISBN: 978-3-540-32631-1
eBook Packages: Computer ScienceComputer Science (R0)