Skip to main content

Local Convergence Analysis of FastICA

  • Conference paper
Independent Component Analysis and Blind Signal Separation (ICA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3889))

Abstract

The FastICA algorithm can be considered as a selfmap on a manifold. It turns out that FastICA is a scalar shifted version of an algorithm recently proposed. We put these algorithms into a dynamical system framework. The local convergence properties are investigated subject to an ideal ICA model. The analysis is very similar to the wellknown case in numerical linear algebra when studying power iterations versus Rayleigh quotient iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comon, P.: Independent component analysis, a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  2. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  3. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  4. Hüper, K.: A Dynamical System Approach to Matrix Eigenvalue Algorithms. In: Mathematical Systems Theory in Biology, Communications, Computation. The IMA Volumes in Mathematics and its Applications, vol. 134, pp. 257–274. Springer, New York (2003)

    Google Scholar 

  5. Regalia, P., Kofidis, E.: Monotonic convergence of fixed-point algorithms for ICA. IEEE Transactions on Neural Networks 14, 943–949 (2003)

    Article  Google Scholar 

  6. Hüper, K., Shen, H., Seghouane, A.-K.: Local convergence properties of FastICA and some generalisations. In: IEEE-ICASSP 2006, Toulouse, France (2006) (accepted)

    Google Scholar 

  7. Hüper, K., Shen, H., Seghouane, A.-K.: Geometric optimisation and FastICA algorithms. In: Contribution to Mini-Symposium: Geometric Optimisation in System and Control I/II The 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan (2006) (accepted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, H., Hüper, K. (2006). Local Convergence Analysis of FastICA. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_111

Download citation

  • DOI: https://doi.org/10.1007/11679363_111

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32630-4

  • Online ISBN: 978-3-540-32631-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics