Skip to main content

An Independent Component Ordering and Selection Procedure Based on the MSE Criterion

  • Conference paper
Independent Component Analysis and Blind Signal Separation (ICA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3889))

  • 3270 Accesses

Abstract

Principal components (PCs) by construction have a natural ordering based on their cumulative proportion of variance explained. However, most ICA algorithms for finding independent components (ICs) are arbitrary, which limit the use of ICA in pattern discovery and dimension reduction. To solve this problem, we propose an efficient IC ordering approach and prove that this method guarantees to find the optimal ordering of ICs based on the MSE criterion. Furthermore, we employ the cross validation method to select the number of dominant ICs. Simulation experiments show that the proposed IC ordering and selection procedure is efficient and effective, which can be used to identify the dominant ICs as well as to reduce the number of ICs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cheung, Y.-m., Xu, L.: An Empirical Method to Select Dominant Independent Components in ICA for Time Series Analysis. In: Proceedings of 1999 International Joint Conference on Neural Networks (IJCNN 1999), Washington, DC, July 10-16, vol. 6, pp. 3883–3887 (1999)

    Google Scholar 

  2. Cheung, Y.-m., Xu, L.: Independent Component Ordering in ICA Time Series Analysis. Neurocomputing 41(1-4), 145–152 (2001)

    Article  MATH  Google Scholar 

  3. Alexander, C.: Market Models: A Guide to Financial Data Analysis. J. Wiley, UK (2001)

    Google Scholar 

  4. Comon, P.: Independent component analysis: a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  5. Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numer. Math. 31, 377–403 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fama, E.F., French, K.R.: Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33, 3–56 (1993)

    Article  Google Scholar 

  7. Golub, G., Heath, M., Wahba, G.: Generalized cross validation as a method for choosing a good ridge parameter. Technometrics 21, 215–224 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Heath, D., Jarrow, R., Morton, A.: Bond Pricing and the Term Structure of Interest Rates: A New Methodology. Econometrica 60(1), 77–105 (1992)

    Article  MATH  Google Scholar 

  9. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  10. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9, 1483–1492 (1997)

    Article  Google Scholar 

  11. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. J. Wiley, New York (2001)

    Book  Google Scholar 

  12. Jutten, C., Herault, J.: Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  13. Wu, E.H.C., Yu, P.L.H.: Volatility modelling of multivariate financial time series by using ICA-GARCH models. In: Gallagher, M., Hogan, J.P., Maire, F. (eds.) IDEAL 2005. LNCS, vol. 3578, pp. 571–579. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, E.H., Yu, P.L.H., Li, W.K. (2006). An Independent Component Ordering and Selection Procedure Based on the MSE Criterion. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_36

Download citation

  • DOI: https://doi.org/10.1007/11679363_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32630-4

  • Online ISBN: 978-3-540-32631-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics