Abstract
In this paper, we consider the problem of online failure detection and isolation for mobile robots. The goal is to enable a mobile robot to determine whether the system is running free of faults or to identify the cause for faulty behavior. In general, failures cannot be detected by solely monitoring the process model for the error free mode because if certain model assumptions are violated the observation likelihood might not indicate a defect. Existing approaches therefore use comparably complex system models to cover all possible system behaviors. In this paper, we propose the mixed-abstraction particle filter as an efficient way of dealing with potential failures of mobile robots. It uses a hierarchy of process models to actively validate the model assumptions and distribute the computational resources between the models adaptively. We present an implementation of our algorithm and discuss results obtained from simulated and real-robot experiments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Rights and permissions
About this paper
Cite this paper
Plagemann, C., Stachniss, C., Burgard, W. Efficient Failure Detection for Mobile Robots Using Mixed-Abstraction Particle Filters. In: Christensen, H.I. (eds) European Robotics Symposium 2006. Springer Tracts in Advanced Robotics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11681120_8
Download citation
DOI: https://doi.org/10.1007/11681120_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32689-2
Online ISBN: 978-3-540-32689-2
eBook Packages: EngineeringEngineering (R0)