Skip to main content

Evaluating Model Construction Methods with Objective Rule Evaluation Indices to Support Human Experts

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3885))

  • 830 Accesses

Abstract

In this paper, we present a novel rule evaluation support method for post-processing of mined results with rule evaluation models based on objective indices. Post-processing of mined results is one of the key issues to make a data mining process successfully. However, it is difficult for human experts to evaluate many thousands of rules from a large dataset with noises completely. To reduce the costs of rule evaluation procedures, we have developed the rule evaluation support method with rule evaluation models, which are obtained with objective indices of mined classification rules and evaluations of a human expert for each rule. To evaluate performances of learning algorithms for constructing rule evaluation models, we have done a case study on the meningitis data mining as an actual problem. In addition, we have also evaluated our method on four rulesets from the four UCI datasets. Then we show the availability of our rule evaluation support method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ali, K., Manganaris, S., Srikant, R.: Partial Classification Using Association Rules. In: Proc. of Int. Conf. on Knowledge Discovery and Data Mining KDD 1997, pp. 115–118 (1997)

    Google Scholar 

  2. Brin, S., Motwani, R., Ullman, J., Tsur, S.: Dynamic itemset counting and implication rules for market basket data. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp. 255–264 (1997)

    Google Scholar 

  3. Frank, E., Wang, Y., Inglis, S., Holmes, G., Witten, I.H.: Using model trees for classification. Machine Learning 32(1), 63–76 (1998)

    Article  MATH  Google Scholar 

  4. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: Proc. of the Fifteenth International Conference on Machine Learning, pp. 144–151 (1998)

    Google Scholar 

  5. Gago, P., Bento, C.: A Metric for Selection of the Most Promising Rules. In: Proc. of Euro. Conf. on the Principles of Data Mining and Knowledge Discovery PKDD 1998, pp. 19–27 (1998)

    Google Scholar 

  6. Goodman, L.A., Kruskal, W.H.: Measures of association for cross classifications. Springer Series in Statistics, vol. 1. Springer, Heidelberg (1979)

    Book  MATH  Google Scholar 

  7. Gray, B., Orlowska, M.E.: CCAIIA: Clustering Categorical Attributes into Interesting Association Rules. In: Proc. of Pacific-Asia Conf. on Knowledge Discovery and Data Mining PAKDD 1998, pp. 132–143 (1998)

    Google Scholar 

  8. Hamilton, H.J., Shan, N., Ziarko, W.: Machine Learning of Credible Classifications. In: Proc. of Australian Conf. on Artificial Intelligence AI 1997, pp. 330–339 (1997)

    Google Scholar 

  9. Hatazawa, H., Negishi, N., Suyama, A, Tsumoto, S., Yamaguchi, T.: Knowledge Discovery Support from a Meningoencephalitis Database Using an Automatic Composition Tool for Inductive Applications. In: Proc. of KDD Challenge 2000 in conjunction with PAKDD 2000, pp. 28–33 (2000)

    Google Scholar 

  10. Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine, CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

    Google Scholar 

  11. Hilderman, R.J., Hamilton, H.J.: Knowledge Discovery and Measure of Interest. Kluwer Academic Publishers, Dordrecht (2001)

    Book  MATH  Google Scholar 

  12. Hinton, G.E.: Learning distributed representations of concepts. In: Proc. of the Eighth Annual Conference of the Cognitive Science Society, Amherest, MA (1986), Reprinted in R.G.M. Morris (ed.)

    Google Scholar 

  13. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Machine Learning 11, 63–91 (1993)

    Article  MATH  Google Scholar 

  14. Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI/MIT Press, California (1996)

    Google Scholar 

  15. Ohsaki, M., Kitaguchi, S., Kume, S., Yokoi, H., Yamaguchi, T.: Evaluation of Rule Interestingness Measures with a Clinical Dataset on Hepatitis. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 362–373. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Perlich, C., Provost, F.J., Simonoff, J.S.: Tree Induction vs. Logistic Regression: A Learning-Curve Analysis. Journal of Machine Learning Research 4, 211–255 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Piatetsky-Shapiro, G.: Discovery, Analysis and Presentation of Strong Rules. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 229–248. AAAI/MIT Press (1991)

    Google Scholar 

  18. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  19. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  20. Rijsbergen, C.: Information Retrieval, ch. 7. Butterworths, London (1979), http://www.dcs.gla.ac.uk/Keith/Chapter.7/Ch.7.html

  21. Smyth, P., Goodman, R.M.: Rule Induction using Information Theory. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 159–176. AAAI/MIT Press (1991)

    Google Scholar 

  22. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the Right Interestingness Measure for Association Patterns. In: Proc. of Int. Conf. on Knowledge Discovery and Data Mining KDD 2002, pp. 32–41 (2002)

    Google Scholar 

  23. Witten, I.H., Frank, E.: DataMining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  24. Yao, Y.Y., Zhong, N.: An Analysis of Quantitative Measures Associated with Rules. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS, vol. 1574, pp. 479–488. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  25. Zhong, N., Yao, Y.Y., Ohshima, M.: Peculiarity Oriented Multi-Database Mining. IEEE Trans. on Knowledge and Data Engineering 15(4), 952–960 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abe, H., Tsumoto, S., Ohsaki, M., Yamaguchi, T. (2006). Evaluating Model Construction Methods with Objective Rule Evaluation Indices to Support Human Experts. In: Torra, V., Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2006. Lecture Notes in Computer Science(), vol 3885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11681960_11

Download citation

  • DOI: https://doi.org/10.1007/11681960_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32780-6

  • Online ISBN: 978-3-540-32781-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics