Skip to main content

On the Use of Tools Based on Fuzzy Set Theories in Parametric Software Cost Estimation

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3885))

  • 851 Accesses

Abstract

The whole software industry has an awful footpath for delivering software on-time and on-budget. Probably, one reason is coming from not deal with the imperfection of information when they use a lot of human process. In this paper, we propose the use of fuzzy measures in contrast with crisp measures of traditional models and, therefore, apply of appropriate aggregators. Traditional models of software cost estimation are constructed from project databases and they describe cost drivers in terms of linguistic estimations using vague terms like “low” or “high”, and such expressions are also used in obtaining actual predictions. But cost drivers are in many cases abstract concepts that are better estimated by breaking them down in a number of second-level aspects. The method proposed is based both, on a concrete study of the use of linguistic variable human categorizations and, on level aspects that are defined by layer and are easy to raise using appropriate aggregators. Moreover, the proposed scheme can have different planes according to the model morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beliakov, G.: How to build aggregation operators from data? International Journal of Intelligent Systems 18, 903–923 (2003)

    Article  MATH  Google Scholar 

  2. Bias, R.G., Mayhew, D.J. (eds.): Cost-Justifying Usability. Academic Press, London (1994)

    Google Scholar 

  3. Bilgiç, T., Türksen, T.: Measurement of Membership Functions: Theoretical and Empirical Work. In: Dubois, D., Prade, H. (eds.) Handbook of Fuzzy Sets and Systems, Fundamentals of Fuzzy Sets, ch. 3, vol. 1, pp. 195–232. Kluwer, Dordrecht (1999)

    Google Scholar 

  4. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  5. Boehm, B., Abts, C., Chulani, S.: Software Development Cost Estimation Approaches – A Survey. Center for Software Engineering, University of California, Technical Report USC-CSE-2005-505

    Google Scholar 

  6. Calvo, T., Kolesárová, A., Komornikóvá, M., Mesiar, R.: Aggregation operators: Basic concepts, issues and properties. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators: New Trends and Applications. Studies in Fuzziness and Soft Computing, vol. 97, pp. 3–106 (2002)

    Google Scholar 

  7. Calvo, T., Pradera, A.: Double aggregation operators. Fuzzy Sets and Systems 142(1), 15–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choquet, G.: Theory of Capacities. Ann. Inst. Fourier 5, 131–296 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crespo, F.J., Sicilia, M.A., Cuadrado, J.J.: On Fuzzy Regression in Software Cost Estimation Models. In: Proceedings of the 2003 ACM-IEEE International Symposium on Empirical Software Engineering (ISESE 2003) (2003)

    Google Scholar 

  10. Crespo, J.J., Sicilia, M.A., Cuadrado, J.J.: On the Use of Fuzzy Regression in Parametric Software Estimation Models: Integrating Imprecision in COCOMO Cost Drivers. WSEAS Transactions on Systems 1(3), 96–101 (2004)

    Google Scholar 

  11. Idri, A., Abran, A., Khoshgoftaar, T.M.: Fuzzy Analogy: A New Approach for Software Cost Estimation. In: Dumke/Abran (eds.) Current Trends in Software Measurement, pp. 127–142. Shaker Publ., Aachen (2001)

    Google Scholar 

  12. Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., Mieno, H.: The max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy Sets and Systems 55, 241–253 (1993)

    Article  Google Scholar 

  13. Musilek, P., Pedrycz, W., Succi, G., Reformat, M.: Software Cost Estimation with Fuzzy Models. Applied Computing Review 8(2), 24–29 (2000)

    Article  Google Scholar 

  14. Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1993)

    MATH  Google Scholar 

  15. Nielsen, J.: Why You Only Need to Test With 5 Users. Jakob Nielsen’s Alertbox, March 19 (2000), available at: http://www.useit.com/alertbox/20000319.html

  16. Rahman, M.: Requirement Enginnering. Oxford University Press, Oxford (2004)

    Google Scholar 

  17. Rosch, E.: Principles of Categorization. In: Readings in Cognitive Science, pp. 312–322. Erlbaum, Mahwah (1988)

    Chapter  Google Scholar 

  18. Sicilia, M.A., García, E., Calvo, T.: On the use of the Choquet integral for the aggregation of usability interface related scores. In: Proceedings of the 2003 International Summer School on Aggregation Operators and their Applications, pp. 159–164 (2003)

    Google Scholar 

  19. Souza Lima Jr., O., Farias, P.M., Belchior, A.D.: Fuzzy function point analysis. In: Proceedings of the 4th European Conference on Software Measurement and ICT Control, Heidelberg, Germany, pp. 161–172 (2001)

    Google Scholar 

  20. Van Welie, M., van der Veer, G.C., Eliëns, A.: Breaking down usability. In: Proc. of Interact 1999, pp. 613–620 (1999)

    Google Scholar 

  21. Yager, R.R.: On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decision Making. IEEE Transaction on Systems, Man and Cybernetics 18, 183–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crespo, F.J., Marbán, Ó. (2006). On the Use of Tools Based on Fuzzy Set Theories in Parametric Software Cost Estimation. In: Torra, V., Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2006. Lecture Notes in Computer Science(), vol 3885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11681960_14

Download citation

  • DOI: https://doi.org/10.1007/11681960_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32780-6

  • Online ISBN: 978-3-540-32781-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics