Abstract
Non-monotonic fuzzy measures induced by an intuitinistic fuzzy set are introduced. Then, using the Choquet integral with respect to the non-monotonic fuzzy measure, the weighted distance between two intuitionistic fuzzy sets is defined. As it will be shown here, under some conditions, the weighted distance coincides with the Hamming distance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atanassov, K.T.: Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia (deposed in Central Sci.-Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian) (1983)
Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)
Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica-Verlag, Heidelberg (1999)
Aumann, R.J., Shapley, L.S.: Values of Non-atomic Games. Princeton Univ. Press, Princeton (1974)
Choquet, G.: Theory of capacitie. Ann. Inst. Fourier, Grenoble 5, 131–295 (1954/1955)
Dellacherie, C.: Quelques commentaires sur les prolongements de capacités. In: Séminaire de Probabilités 1969/1970, Strasbourg. Lecture Notes in Mathematics, vol. 191, pp. 77–81 (1971)
Denneberg, D.: Non additive measure and Integral. Kluwer Academic Publishers, Dordrecht (1994)
Rébillé, Y.: Sequentially continuous non-monotonic Choquet integrals. Fuzzy Sets and Systems 153(1), 79–94 (2005)
Murofushi, T., Sugeno, M.: An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets and Systems 29, 201–227 (1989)
Murofushi, T., Sugeno, M., Machida, M.: Non-monotonic fuzzy measure and the Choquet integral. Fuzzy sets and Systems 64(1), 73–86 (1994)
Narukawa, Y., Murofushi, T., Sugeno, M.: Space of fuzzy measures and convergence. Fuzzy Sets and Systems 138(3), 497–506 (2003)
Sugeno, M.: Theory of fuzzy integrals and its applications, Doctoral Thesis, Tokyo Institute of Technology (1974)
Szmidt, E., Kacprzyk, J.: On distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114, 505–518 (2000)
Waegenaere, A.D., Wakker, P.P.: Nonmonotonic Choquet integrals. Journal of Mathematical Economics 36, 45–60 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Narukawa, Y., Torra, V. (2006). Non-monotonic Fuzzy Measures and Intuitionistic Fuzzy Sets. In: Torra, V., Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2006. Lecture Notes in Computer Science(), vol 3885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11681960_16
Download citation
DOI: https://doi.org/10.1007/11681960_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32780-6
Online ISBN: 978-3-540-32781-3
eBook Packages: Computer ScienceComputer Science (R0)