Abstract
Many realistic decision aid problems are fraught with facets of ambiguity, uncertainty and conflict, which hamper the effectiveness of conventional and fuzzy preference modeling approaches, and command the use of more expressive representations. In the past, some authors have already identified Ginsberg’s/Fitting’s theory of bilattices as a naturally attractive candidate framework for representing uncertain and potentially conflicting preferences, yet none of the existing approaches addresses the real expressive power of bilattices, which lies hidden in their associated truth and knowledge orders. As a consequence, these approaches have to incorporate additional conventions and ‘tricks’ into their modus operandi, making the results unintuitive and/or tedious. By contrast, the aim of this paper is to demonstrate the potential of (rectangular) bilattices in encoding not just the problem statement, but also its generic solution strategy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arieli, O., Avron, A.: Reasoning with logical bilattices. Journal of Logic, Language, and Information 5(1), 25–63 (1996)
Arieli, O., Avron, A.: Bilattices and paraconsistency. In: Batens, D., Mortensen, C., Priest, G., Van Bendegem, J. (eds.) Frontiers of Paraconsistent Logic, pp. 11–27. Research Studies Press (2000)
Arieli, O., Cornelis, C., Deschrijver, G., Kerre, E.E.: Relating intuitionistic fuzzy sets and interval-valued fuzzy sets through bilattices. In: Ruan, D., D’Hondt, P., De Cock, M., Nachtegael, M., Kerre, E.E. (eds.) Applied Computational Intelligence, pp. 57–64. World Scientific, Singapore (2004)
Arieli, O., Cornelis, C., Deschrijver, G., Kerre, E.E.: Bilattice-based squares and triangles. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 563–575. Springer, Heidelberg (2005)
Atanassov, K.T.: Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia (deposed in Central Sci.-Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian) (1983)
Avron, A.: The structure of interlaced bilattices. Journal of Mathematical Structures in Computer Science 6, 287–299 (1996)
Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–56. Oriel Press (1977)
Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern Uses of Multiple-Valued Logic, pp. 7–37. Reidel Publishing Company, Dordrecht (1977)
Brafman, R., Junker, U. (eds.): Multidisciplinary IJCAI 2005 Workshop on Advances in Preference Handling (2005), The proceedings is available online at: http://wikix.ilog.fr/wiki/bin/view/Preference05/WebHome
Cornelis, C., Arieli, O., Deschrijver, G., Kerre, E.E.: Uncertainty modeling by bilattice-based squares and triangles. In: IEEE Transactions on Fuzzy Sets and Systems (accepted, 2006)
Cornelis, C., Atanassov, K.T., Kerre, E.E.: Intuitionistic fuzzy sets and interval-valued fuzzy sets: a critical comparison. In: Wagenknecht, M., Hampel, R. (eds.) Proc. 3rd Int. Conf. in Fuzzy Logic and Technology (EUSFLAT 2003), pp. 159–163 (2003)
Cornelis, C., Deschrijver, G., Kerre, E.E.: Square and triangle: reflections on two prominent mathematical structures for the representation of imprecision. Notes on Intuitionistic Fuzzy Sets 9(3), 11–21 (2003)
De Baets, B., Delgado, M., Fodor, J., Herrera, F., Herrera-Viedma, E., Martinez, L. (eds.): International Journal of Intelligent Systems, vol. 18(7) (2003), Special issue on preference modeling and applications
De Baets, B., Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets and Systems 104(1), 61–75 (1999)
Deschrijver, G., Cornelis, C., Kerre, E.E.: Square and triangle: a comparison. In: Proc. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pp. 1389–1396 (2004)
Esteva, F., Garcia, P., Godo, L.: Enriched interval bilattices and partial many-valued logics: an approach to deal with graded truth and imprecision. Uncertainty, Fuzziness and Knowledge-based Systems 2(1), 37–54 (1994)
Fitting, M.: Bilattices in logic programming. In: Epstein, G. (ed.) Proc. 20th International Symposium on Multiple-Valued Logic, pp. 238–246 (1990)
Fitting, M.: Kleene’s logic, generalized. Journal of Logic and Computation 1, 797–810 (1992)
Fitting, M.: Kleene’s three-valued logics and their children. Fundamenta Informaticae 20, 113–131 (1994)
Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht (1994)
Fortemps, P., Słowiński, R.: A graded quadrivalent logic for ordinal preference modelling: Loyola-like approach. Fuzzy Optimization and Decision Making 1, 93–111 (2002)
Ginsberg, M.L.: Multi-valued logics: A uniform approach to reasoning in artificial intelligence. Computer Intelligence 4, 256–316 (1988)
Gorzałczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Journal Math. Anal. Appl. 21(1), 1–17 (1987)
Perny, P., Tsoukiàs, A.: On the continuous extension of a four valued logic for preference modelling. In: Proc. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 1998), pp. 302–309 (1998)
Roubens, M., Vincke, P.: Preference modelling. Lecture Notes in Economics and Mathematical Systems, 250 (1985)
Sambuc, R.: Fonctions Φ-floues. Application à l’aide au diagnostic en pathologie thyroidienne, Ph. D. Thesis, University of Marseille (1975)
Tsoukiàs, A., Perny, P., Vincke, P.: From concordance/discordance to the modelling of positive and negative reasons in decision aiding. In: Bouyssou, D., Jacquet-Lagrèze, E., Perny, P., Slowiński, R., Vanderpooten, D. (eds.) Aiding Decisions with Multiple Criteria: Essays in Honor of Bernard Roy, pp. 147–174. Kluwer, Dordrecht (2002)
Tsoukiàs, A., Vincke, P.: A new axiomatic foundation of partial comparability. Theory and Decision 39, 79–114 (1995)
Tsoukiàs, A., Vincke, P.: Extended preference structures in MCDA. In: Clímaco, J. (ed.) Multi-criteria Analysis, pp. 37–50. Springer, Heidelberg (1997)
Türkşen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems 20(2), 191–210 (1986)
Van de Walle, B., De Baets, B., Kerre, E.E.: A plea for the use of Łukasiewicz triplets in the definition of fuzzy preference structures (I). General argumentation. Fuzzy Sets and Systems 97(3), 349–359 (1998)
Van de Walle, B., De Baets, B., Kerre, E.E.: A plea for the use of Łukasiewicz triplets in the definition of fuzzy preference structures (II). The identity case. Fuzzy Sets and Systems 99(3), 303–310 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arieli, O., Cornelis, C., Deschrijver, G. (2006). Preference Modeling by Rectangular Bilattices. In: Torra, V., Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2006. Lecture Notes in Computer Science(), vol 3885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11681960_5
Download citation
DOI: https://doi.org/10.1007/11681960_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32780-6
Online ISBN: 978-3-540-32781-3
eBook Packages: Computer ScienceComputer Science (R0)