Abstract
Recent years have seen growing interest in effective algorithms for summarizing and querying massive, high-speed data streams. Randomized sketch synopses provide accurate approximations for general-purpose summaries of the streaming data distribution (e.g., wavelets). The focus of existing work has typically been on minimizing space requirements of the maintained synopsis — however, to effectively support high-speed data-stream analysis, a crucial practical requirement is to also optimize: (1) the update time for incorporating a streaming data element in the sketch, and (2) the query time for producing an approximate summary (e.g., the top wavelet coefficients) from the sketch. Such time costs must be small enough to cope with rapid stream-arrival rates and the real-time querying requirements of typical streaming applications (e.g., ISP network monitoring). With cheap and plentiful memory, space is often only a secondary concern after query/update time costs.
In this paper, we propose the first fast solution to the problem of tracking wavelet representations of one-dimensional and multi-dimensional data streams, based on a novel stream synopsis, the Group-Count Sketch (GCS). By imposing a hierarchical structure of groups over the data and applying the GCS, our algorithms can quickly recover the most important wavelet coefficients with guaranteed accuracy. A tradeoff between query time and update time is established, by varying the hierarchical structure of groups, allowing the right balance to be found for specific data stream. Experimental analysis confirms this tradeoff, and shows that all our methods significantly outperform previously known methods in terms of both update time and query time, while maintaining a high level of accuracy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Gibbons, P.B., Matias, Y., Szegedy, M.: Tracking join and self-join sizes in limited storage. In: ACM PODS (1999)
Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. In: ACM STOC (1996)
Babcock, B., Babu, S., Datar, M., Motwani, R.: Jennifer Widom. “Models and issues in data stream systems”. In: ACM PODS (2002)
Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate query processing using wavelets. In: VLDB (2000)
Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 693. Springer, Heidelberg (2002)
Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: Tracking most frequent items dynamically. In: ACM PODS (2003)
Cormode, G., Muthukrishnan, S.: What’s new: Finding significant differences in networkdata streams. In: IEEE Infocom (2004)
Deligiannakis, A., Roussopoulos, N.: Extended wavelets for multiple measures. In: ACM SIGMOD (2003)
Dobra, A., Garofalakis, M.N., Gehrke, J., Rastogi, R.: Processing complex aggregate queries over data streams. In: ACM SIGMOD (2002)
Garofalakis, M., Kumar, A.: Deterministic Wavelet Thresholding for Maximum-Error Metrics. In: ACM PODS (2004)
Gilbert, A., Kotidis, Y., Muthukrishnan, S., Strauss, M.: One-pass wavelet decomposition of data streams. IEEE TKDE 15(3) (2003)
Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast, smallspace algorithms for approximate histogram maintenance. In: ACM STOC (2002)
Gilbert, A., Kotidis, Y., Muthukrishnan, S., Strauss, M.: How to summarize the universe: Dynamic maintenance of quantiles. In: VLDB (2002)
Guha, S., Harb, B.: Wavelet Synopsis for Data Streams: Minimizing non-Euclidean Error. In: KDD (2005)
Jahangiri, M., Sacharidis, D., Shahabi, C.: Shift-Split: I/O efficient maintenance of wavelet-transformed multidimensional data. In: ACM SIGMOD (2005)
Jawerth, B., Sweldens, W.: An Overview of Wavelet Based Multiresolution Analyses. SIAM Review 36(3) (1994)
Karras, P., Mamoulis, N.: One-pass wavelet synopses for maximum-error metrics. In: VLDB (2005)
Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In: VLDB (2002)
Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity estimation. In: ACM SIGMOD (1998)
Muthukrishnan, S.: Data streams: algorithms and applications. In: SODA (2003)
Schmidt, R.R., Shahabi, C.: Propolyne: A fast wavelet-based technique for progressive evaluation of polynomial range-sum queries. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, p. 664. Springer, Heidelberg (2002)
Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets for computer graphics: theory and applications. Morgan Kaufmann Publishers, San Francisco (1996)
Thaper, N., Guha, S., Indyk, P., Koudas, N.: Dynamic multidimensional histograms. In: ACM SIGMOD (2002)
Vitter, J.S., Wang, M.: Approximate computation of multidimensional aggregates of sparse data using wavelets. In: ACM SIGMOD (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cormode, G., Garofalakis, M., Sacharidis, D. (2006). Fast Approximate Wavelet Tracking on Streams. In: Ioannidis, Y., et al. Advances in Database Technology - EDBT 2006. EDBT 2006. Lecture Notes in Computer Science, vol 3896. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11687238_4
Download citation
DOI: https://doi.org/10.1007/11687238_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32960-2
Online ISBN: 978-3-540-32961-9
eBook Packages: Computer ScienceComputer Science (R0)