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ABSTRACT
There are numerous applications that need to deal with a
large graph and need to query reachability between nodes in
the graph. A 2-hop cover can compactly represent the whole
edge transitive closure of a graph in O(|V | · |E|1/2) space,
and be used to answer reachability query efficiently. How-
ever, it is challenging to compute a 2-hop cover. The existing
approaches suffer from either large resource consumption or
low compression rate. In this paper, we propose a hierarchi-
cal partitioning approach to partition a large graph G into
two subgraphs repeatedly in a top-down fashion. The unique
feature of our approach is that we compute 2-hop cover while
partitioning. In brief, in every iteration of top-down parti-
tioning, we provide techniques to compute the 2-hop cover
for connections between the two subgraphs first. A cover is
computed to cut the graph into two subgraphs, which results
in an overall cover with high compression for the entire graph
G. Two approaches are proposed, namely a node-oriented
approach and an edge-oriented approach. Our approach can
efficiently compute 2-hop cover for a large graph with high
compression rate. Our extensive experiment study shows
that the 2-hop cover for a graph with 1,700,000 nodes and
169 billion connections can be obtained in less than 30 min-
utes with a compression rate about 40,000 using a PC.

1. INTRODUCTION
Graph structured data is enjoying an increasing popu-

larity as Web technology and new data management and
archiving techniques advance. Numerous emerging applica-
tions need to work with graph-like data. Instances include
navigation behavior analysis for Web usage mining [3], web
site analysis [11], and biological network analysis for life sci-
ence [22]. In addition, RDF allows users to explicitly de-
scribe semantical resource in graphs [4]. And querying and
analyzing graph structured data becomes important. As a
major standard for representing data on the World-Wide-
Web, XML provides facilities for users to view data as graphs
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with two different links, the parent-child links (document-
internal links) and reference links (cross-document links).
XLink (XML Linking Language) [9] and XPointer (XML
Pointer Language) [10] provide more facilities for users to
manage their complex data as graphs and integrate data
effectively. The dominance of graphs in real-world applica-
tions demands new graph data management so that users
can access graph data effectively and efficiently.

Reachability queries, to test whether there is a path from
a node v to another node u in a directed graph, have being
studied [1, 7, 17, 18, 23, 21] and are deemed to be a very
basic type of queries for many applications. Consider a se-
mantic network that consists of people as nodes in the graph
and relationships among people as edges in the graph. There
are needs to know whether two people are related somehow
for security reason [2]. On biological networks, where nodes
are either molecules, or reactions, or physical interactions of
living cells, and edges are interactions among them, there is
an important question to “find all genes whose expressions
is directly or indirectly influenced by a given molecule” [22].
All those questions can be mapped into reachability queries.
Reachability queries are so common that fast processing for
them are required. The needs of such a reachability query
can be even found in XML when two types of links are
treated the same.

Being introduced in [7], a 2-hop cover can compactly rep-
resent the whole edge transitive closure of a graph in O(|V | ·

|E|1/2) space, providing a time- and space-efficient solution
to reachability query processing. Despite the importance of
the theoretical bound on the time and space complexity for
2-hop covers, the cost for computing the minimum 2-hop
cover can be very high in practice. It needs to precompute
the transitive closure which requires large memory space.
In [19], Schenkel, Theobald and Weikum run Cohen et al’s
algorithm on a 64 processor Sun Fire-15000 server with 180
gigabyte memory for a subset of DBLP which consists of 344
millions of connections. It took 45 hours and 23 minutes us-
ing 80 gigabytes of memory to find the 2-hop cover which is
in size of 1,289,930 entries.

Contributions of this paper: (1) Different from the ex-
isting partitioning in a flat fashion, we propose a hierar-
chical partitioning in a top-down fashion. (2) We focus
on 2-hop cover sensitive partitioning, and compute 2-hop
cover while partitioning. (3) We studied two approaches,
namely, a node-oriented approach and an edge-oriented ap-
proach. The node-oriented approach focuses on selecting a
set of nodes to cut a graph while computing 2-hop cover.



The edge-oriented approach considers edges as nodes, while
computing 2-hop cover when partitioning, and it does not
need to add additional nodes. (4) Our approaches do not
assume the pre-computed transitive closure for the underly-
ing graph. (5) We conducted extensive performance studies.
Our extensive experiment studies shows that the 2-hop cover
for a graph with 1,700,000 nodes and 169 billion connections
can be obtained in less than 30 minutes with a compression
rate about 40,000 using a PC.

Organization of this paper: We review the 2-hop cover
problem in Section 2 and existing approaches in Section 3.
A novel framework, a 2-hop sensitive graph partitioning
method is then introduced in Section 4. Section 5 pro-
poses the first solution within the framework based on a
node-separator using an R-tree and operations on rectan-
gles. Section 6 discusses the second solution based on an
edge-separator using only intervals and linear-time opera-
tions on them. We conducted extensive experiment evalu-
ation on our proposed approaches in Section 7. Section 8
gives related work. Finally, the paper is concluded by Sec-
tion 9.

2. THE 2-HOP COVER PROBLEM
We introduce 2-hop Labelings and 2-hop cover in brief.

Let G = (V, E) be a directed graph. The 2-hop reachability
labeling for G is proposed by Cohen et al. in [7] to efficiently
process reachability queries in the form of u ; v, where u
and v are two nodes in G. u ; v returns true if and only if
there is a directed path in G from u to v. In other words,
let TG be the edge transitive closure of G, u ; v is true if
(u, v) ∈ TG. We call such a pair (u, v) a connection. Note:
TG can be very large for a large and dense graph G.

A 2-hop reachability labeling over graph G assigns ev-
ery node v ∈ V a label L(v) = (Lin(v), Lout(v)), where
Lin(v), Lout(v) ⊆ V , and u ; v is true if and only if
Lout(u) ∩ Lin(v) 6= ∅. A 2-hop reachability labeling for G
is derived from a 2-hop cover of G, which is defined upon a
set of 2-hop clusters. Let ancs(w) and desc(w) be the set
of all ancestors of node w and the set of all descendants of
w, in G, respectively. And let Aw ⊆ ancs(w) ∪ {w} and
Dw ⊆ desc(w)∪{w}. A 2-hop cluster, S(Aw, w, Dw), repre-
sents a set of connections from every node a in Aw to every
node d in Dw, such as {(a, d) | a ∈ Aw ∧ d ∈ Dw}. The
2-hop cover L of G compactly encodes all connections of
S(Aw, w, Dw) by adding a center, w, into all Lout(a) and
Lin(d), and covers every connection in TG for graph G. Let
all connections covered by L be PL. PL consists of all (a, d)
such that Lout(a) ∩ Lin(d) 6= ∅, and PL = TG [7]. In this
paper, we use the 2-hop cover and the 2-hop reachability
labeling interchangeably, because L consists of Lin and Lout

for all nodes in graph G. The size of the 2-hop cover is given
as below.

|L| =
X

v∈V (G)

(|Lin(v)|+ |Lout(v)|) (1)

The optimal 2-hop cover problem is to find the minimum size
2-hop cover for a given graph G(V, E), which is proved to be
NP-hard [7]. Based on the greedy algorithm for minimum
set cover problem [14], Cohen et al. give an approximation
algorithm to get a nearly optimal 2-hop cover which is larger
than the optimal one at most O(log |V |).

The algorithm proceeds in an iterative manner. In each it-
eration, it examines all different 2-hop clusters, S(Aw, w, Dw),

by varying Aw and Dw for different node w as center. The al-
gorithm picks the best 2-hop cluster in each iteration, where
the best S(Aw, w, Dw) has the maximum ratio as given in
Eq. (2) below.

|S(Aw, w, Dw) ∩ T ′|

|Aw|+ |Dw |
(2)

Here, T ′ is the set of uncovered connections by then. Eq. (2)
means to cover as many uncovered connections as the div-
idend with a cost as small as the divisor. The algorithm
completes when all connections in G are covered. We refer
to the above iteration processing as the 2-hop cover program
in this paper. In [6] we showed that we can solve the mini-
mum 2-hop cover problem effectively by employing another
merit function to replace Eq. (2) in a 2-hop cover program
as in Eq. (3).

|S(Aw, w, Dw) ∩ T ′| (3)
Eq. (3) means to cover as many uncovered connections as
possible by one S(Aw, w, Dw). Eq. (3) implies that it does
not vary Aw and Dw. Note: the the cost of |Aw| + |Dw|
is taken into consideration, although it does not explicitly
appear in Eq.( 3), because the node a and d are added into
Aw and Dw , respectively, only if there exists an uncovered
connection (a, d) ∈ T ′. In [6], we showed that the size of the
2-hop cover computed with Eq. (3) is only slightly larger
than that obtained with Eq. (2) but can be computed fast.
The quality of a 2-hop cover L is weighted by a compression
rate, R, which is defined to be the ratio of the number of

covered connections to the total size of L, namely R = |PL|
|L|

.

The higher compression rate, the better quality of a 2-hop
cover.

We proposed a fast algorithm in [6] to compute a 2-hop
cover for an entire graph G without partitioning the graph.
However, when a graph G is very large and dense, it becomes
necessary to compute a 2-hop cover by considering the pos-
sibility of partitioning a graph into small graphs, which is
the main focus of this paper.

3. EXISTING WORK
The necessity of partitioning a graph into small graphs

was first pointed out by Schenkel et al. in [18]. Schenkel et
al. proposed an approach in [18] to compute 2-hop cover in
three steps. First, it partitions graph, G, into k subgraphs
G1, G2, · · · , Gk. Second, it computes the transitive closure
and the 2-hop cover for each subgraph Gi, for 1 ≤ i ≤ k,
and stores the 2-hop cover on disk. Third, it merges the k
2-hop covers for the k subgraphs, which needs to take the
edges that cross subgraphs into consideration. The merging
yields a 2-hop cover for the entire graph G.

The first and the second step are straightforward. In [18],
Cohen’s algorithm [7] is used to compute the 2-hop cover
for each subgraph Gi. The third step is called the cover
joining phase, which combines all 2-hop covers obtained in
the second step, and more importantly, adds new covers
to ensure the correctness of the 2-hop cover for the entire
graph, G. As reported in [18, 19], the third step becomes the
bottleneck of the whole processing, and most of the running
time is spent on joining the 2-hop covers from subgraphs,
G1, G2, · · · , Gk. We focus on the third step below.

Suppose the 2-hop covers of subgraphs, Gi, for 1 ≤ i ≤ k,
are computed. A cross-partition edge, (x, y), is an edge that
does not exist in any single subgraph, and will introduce
additional uncovered connections from the ancestors of x to
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Figure 2: 2-Hop Clusters

the descendants of y. In [18], Schenkel et al. constructed a
2-hop cover, L, by encoding all such connections via (x, y)
according to the following two operations:

• For all a ∈ ancs(x), Lout(a)← Lout(a) ∪ {x}, and
• For all d ∈ desc(y) ∪ {y}, Lin(d)← Lin(d) ∪ {x}.

It means that, for all cross-partition edges, (x, y), 2-hop
clusters, (ancs(x), x, desc(y)), will be constructed mandato-
rily to augment L. This, however, determines Ax and Dx

disregarding whether a covered connection (a, d) already ex-
ists or not for a ∈ ancs(x) and d ∈ desc(y). The above
two operations consume a lot of time, because the sizes of
ancs(x) and desc(y) can be large for a large graph.

Example 3.1: A sample graph is shown in Figure 1(a) as
the running example. With the approach in [18], it parti-
tions the graph into two subgraphs, G1 and G2. G1 con-
sists of nodes, {n1,n2,n3,n4,n6}, and G2 consists of nodes,
{n5,n7,n8,n9,n10}. The set of cross-partition edges is {(n2, n7)
(n3, n5),(n6, n8),(n6, n9}. Figure 2 shows four 2-hop clusters
corresponding to the 4 cross-partition edges, where we illus-
trate a 2-hop cluster with all its nodes arranged in three lay-
ers. The top layer or bottom layer consists of those nodes in
Aw or Dw except for the center w, respectively, whereas the
middle layer is for the center w. All connections covered by
a 2-hop cluster are all the connections in the corresponding
three-layer graph. The 2-hop cover for the graph includes
Figure 2 (c) and Figure 2 (d), where both consist of many
overlapped connections. It will result in additional comput-
ing cost and low compression rate. 2

In [19], Schenkel et al. proposed another approach. For
all cross-partition edges, (x, y), it refines this process within
ancestors of x and the descendants of y on partitions instead
of the entire graph. It first computes a 2-hop cover L′ for
a auxiliary graph, called the partition skeleton graph, or
PSG for short. The nodes in PSG are all x and y of cross-
partition edges (x, y), and the edges in PSG are either cross-
partition edges, (x, y), or newly added edges (a, d), where d
is a source node for some cross-partition edge and a is a
source node for some cross-partition edge, if (1) a and d are
in the same partition, and (2) a reaches d. L is augmented
by the following two operations for each cross-partition edge
(x, y):

• Lout(a)← Lout(a) ∪ L′
out(x), and

• Lin(d)← Lin(d) ∪ L′
in(y).

Here, a is in ancs′(x), the set of ancestors of x in the same
partition of x, and d is in desc′(y), the set of descendants of

y in the same partition of y. It means that a number of 2-
hop clusters, (ancs′(x), w, {w}) and ({w}, w, desc′(y)), will
be constructed mandatorily. Note: the approach in [19] will
identify an identical 2-hop cover as that obtained by the ap-
proach in [18], when partitioning a graph G into two smaller
graphs, G1 and G2. When it partitions a graph into k sub-
graphs, for k > 2, it may result in a PSG which is denser
than the original graph G. Consider graph G in Figure 1(a).
Suppose that it partitions G into three subgraphs: G1, G2,
and G3. Here, G1 is the top node, G3 is the bottom node,
and G2 is the 6 nodes in the middle plus the edges among
the 6 nodes as shown in Figure 1(b). The approach in [19]
generates a PSG graph by connecting all the cross-partition
edges over all subgraphs, as a ’global’ graph. It attempts
to find the 2-hop cover by the cross-partitions edges glob-
ally. However, as shown in Figure 1(c), the PSG is with
more additional edges, and becomes denser than the orig-
inal graph. This fact implies that it may need even more
efforts to compute the 2-hop cover for PSG.

4. 2-HOP SENSITIVE PARTITIONING
In this paper, we propose a new top-down hierarchical

partitioning approach. The main difference between our top-
down hierarchical partitioning and the existing approaches
given [18, 19] is illustrated in Figure 3.

As discussed in the previous section, the approaches in [18,
19] partition a graph G into a set of subgraphs G1, G2, · · ·
(Figure 3 (a)). We call them a flat approach. The approach
in [18] is to work on small subgraphs, because it consumes
too much computation and I/O time to deal with a large
graph directly. In other words, it considers efficiency as
a more important issue than the compression rate. The
approach in [18] can possibly compute a 2-hop cover for
a subgraph with high compression rate. But, those 2-hop
covers may not be the best for the entire graph. When
merging these 2-hop covers to be correct for the entire graph,
it may generate a final 2-hop cover with low compression
rate. The approach in [19] considers the compression rate,
and attempts to find a global graph, PSG, to handle the
cross-partition edges first. The problem is that PSG can be
even denser than the original graph.

On the other hand, our hierarchical approach repeatedly
partitions a graph into two subgraphs in a top-down fashion
(Figure 3 (b)). In every step, first, for a given graph G, we
bisect G into two subgraphs, GA and GD. The bisection
of G into GA and GD is outlined in Figure 6. In addition
to the two subgraphs GA and GD, we consider an induced
subgraph, Gc(Vc, Ec), represented by the small dots in Fig-
ure 6, severing as the connection between two subgraphs GA

and GD. Second, we compute a minimum 2-hop cover, L,
for Gc, such that all connections (induced by cross-partition
edges) between the two subgraphs, GA and GD, are covered
by L. It is important to note that L becomes a portion of
the 2-hop cover for the graph, G. Third, with the computed
2-hop cover L, we extract an induced subgraph of GA, de-
noted G>, which does not include any centers w computed
in L to cover Gc, and extract an induced subgraph of GD,
denoted G⊥, which does not include any centers w computed
in L to cover Gc. Therefore, we have three subgraphs Gc,
G>, and G⊥ that they do not have any nodes in common.
Afterwords, there is no need to consider any connections be-
ing missed due to the partitioning, and only 2-hop covers of
the two remaining subgraphs, G> and G⊥, need to be com-
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Topdown(G, H)

Input: a DAG, G, and H as a 2-hop cover repository.
Output: the 2-hop cover, H, of G.

1: bisect G into GA and GD ;
2: let Gc be the edges between GA and GD ;
3: CrossCover(Gc, G, H);
4: G> ← Extract(GA, H);
5: G⊥ ← Extract(GD, H);
6: if |V (G>)| is smaller than a pre-defined threshold T
7: Cover(G>, H);
8: else

9: Topdown(G>, H);
10: if |V (G⊥)| is smaller than T
11: Cover(G⊥, H);
12: else

13: Topdown(G⊥, H);

Figure 5: The Top-Down Hierarchical Approach

puted. Let the 2-hop cover for the subgraphs, G> and G⊥,
be L> and L⊥, respectively. There is PL∪PL>

∪PL⊥
= TG.

Thus we guarantee the correctness of resulting 2-hop covers
covering all connections in the entire graph G. It is worth
noting that we do not need to further merge 2-hop covers
computed from subgraphs. In addition, because all 2-hop
covers are computed to be minimized, the compression rate
is high. As a remark, we consider both efficiency and im-
pression rate as important issues.

We outline our approach, denoted Topdown(G, H) in Fig-
ure 5. Topdown takes a graph G as input. The input
H (call-by-reference) is used to maintain the 2-hop covers
computed in each step in Topdown, and is initialized as
empty. In the following, we assume a graph G is DAG,
because the 2-hop cover for an arbitrary directed graph can
be obtained from the 2-hop cover of its corresponding DAG
with a simple pre- and post-processing step as discussed in
[6]. In Topdown(G, H), it first bisects the input graph, G,
into two subgraphs, GA and GD (line 1). Let Gc(Vc, Ec) be
the induced graph for the connections between GA and GD

(line 2), where the set of edges, Ec, contains all edges (a, d)
if a ∈ GA and d ∈ GD, and (a, d) does not appear in GA and
GD, and the set of nodes, Vc, contains all nodes appearing
in Ec. Then, it computes the 2-hop cover for Gc by calling
CrossCover(Gc, G, H) (line 3). We will discuss it in detail
later in this paper. When it returns, H will be updated by
including the 2-hop cover for Gc. Next, it extracts G> and
G⊥ from GA and GD, respectively. It is simply to remove
nodes from GA and GD and the edges connecting to them,
respectively, if they appear in the 2-hop cover computed for
Gc. In the remaining (line 6-13), it computes a 2-hop cover
for G> and G⊥, respectively, by calling Cover(), if its size
is small to be stored in main memory. Cover() can be im-
plemented using the fast algorithm given in [6]. Otherwise,
it will recursively calling Topdown in a top-down fashion.
When it completes, H maintains the 2-hop cover for the
original graph.
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Figure 6: Bisect G into GA and GD
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Below, we will discuss bisection in Section 4.1, and discuss
CrossCover() in Section 5 and Section 6.

4.1 Bisection
In this section, we discuss how to bisect a graph G into

GA and GD, and how to obtain a graph Gc. An important
issue here is how to find the best way to bisect a graph
G when the compression rate is concerned. The issue is
different from the existing graph partitioning approaches in
the literature, because the main concern is the compression
rate of computing a 2-hop cover.

We propose a heuristics to bisect a graph G based on
compression rate. We define the compression rate of a sin-
gle 2-hop cluster as the ratio of the number of connections
it can cover. It fits our intuition that a set of 2-hop clus-
ters with high compression rate can also result in a high
compression rate for the 2-hop cover. Let x = |Aw| and
y = |Dw |. The compression rate of the 2-hop cluster is cal-
culated as: r(x, y) = xy−1

x+y
, where we have x ≥ 1 and y ≥ 1.

Given a 2-hop cluster S(Aw, w, Dw) to cover n connections,
consider the maximum and the minimum of its compression
rate. Since xy− 1 = n, there is r(x, y) = xn

x2+n+1
or yn

y2+n+1

We examine the derivative of r:

dr

dx
=

n2 + n− nx2

(x2 + n + 1)2
or

n2 + n− ny2

(y2 + n + 1)2

When dr
dx

= 0, r becomes the maximum where we have

x2 = y2 = n + 1. In other words, for a 2-hop cluster
S(Aw, w, Dw) to cover n connections, its compression rate
is maximized when |Aw| equals to |Dw |. On the other hand,
when x2 < n + 1, r increases in terms of x, whereas when
x2 > n + 1, r decreases in terms of x. It also applies to
y. When x = 1 and y = n + 1 or y = 1 and x = n + 1,
r will be minimized, and when x and y become closer, r
becomes larger. Therefore, we shall select a center w where
Aw and Dw of S(Aw, w, Dw) tend to have similar size, and
avoid to select a center w where the sizes of Aw and Dw of
S(Aw, w, Dw) differ significantly. Figure 4 (a) depicts the
desired balanced 2-hop cluster, whereas Figure 4 (b) depicts
the unbalanced. Hence, we bisect a graph to cut the graph
in the middle.

The procedure of bisection of G is given below. We sort all
nodes in G using topological sort [8]. Note: all the directed
edges (ordered pairs) are toward one direction, because G is
a DAG. The bisection is to cut G in the middle. One half of
nodes go to GA, and the other half go to GD, and GA and
GD are two induced subgraphs of G, respectively. Next, we
can obtain an induced subgraph, Gc(Vc, Ec), with a set of
cross-partition edges Ec = {(a, d)|a ∈ GA, d ∈ GD}.

Example 4.1: Consider Example 3.1. We bisect G (Fig-
ure 1(a)) into GA and GD as shown in Figure 7, where
V (GA) ={n1,n2,n3,n4, n5}, and V (GD) ={n6,n7,n8,n9, n10}.
The graph Gc contains the following edges: (n2, n6), (n2, n7),
(n4, n6), (n5, n7), and (n5, n8). 2



5. CROSSCOVER: A NODE-ORIENTED AP-
PROACH

The CrossCover(Gc, G, H) is to find a set of centers, w,
(appearing in the 2-hop cover) by which the two subgraphs,
G> (⊆ GA) and G⊥ (⊆ GD) can be completely discon-
nected. In addition, any connections from G> to G⊥ must
go via some centers w. We propose two approaches in this
paper to compute the 2-hop cover for graph Gc. One is a
node-oriented approach, which we will discuss in this sec-
tion, and the other is an edge-oriented approach, which we
will discuss in the next section.

We explain our node-oriented approach using an example.
Consider Figure 6 (a). The graph Gc(Vc, Ec) is illustrated as
the small dots and the edges among them. We want to com-
pute a 2-hop cover for Gc that can also disconnect two sub-
graphs, GA and GD in Figure 6 (a). Regarding the function
of disconnecting two subgraphs, for any edge (a, d) ∈ Ec, we
only need to consider one of the two nodes, a and d, to be
selected as a center to cut.

Therefore, we first select a subset of nodes, Vw of V (Gc)
as a node-separator by which G are disconnected. To obtain
such a node-separator Vw from Ec is to find a set of nodes Vw

such that every edge in Ec is incident with some node in Vw.
We use a simple algorithm as follows to do so. Let Vw = ∅
initially. We iteratively add to Vw a node v with the largest
degree in Ec, that is the node with the largest number of
edges in Ec being incident with v, and remove those edges
incident to v from Ec. We repeat it until Ec becomes empty.
The resulting Vw is a node-separator to disconnect G into
two subgraphs.

Let Vw = {w1, w2, · · · , wk}. The 2-hop cover, L, can be
computed under a restriction that all centers must be se-
lected in Vw using Eq. (3), which can be done with a simple
modification of algorithm in [6]. Note: the algorithm will
select S(Aw, w, Dw) with the maximized value of Eq. (3).
It will results in a set of 2-hop clusters, S(Aw1

, w1, Dw1
),

S(Aw2
, w2, Dw2

), · · · , S(Awk
, wk, Dwk

). G> and G⊥ are
two induced subgraphs that contain sets of nodes, V (G>) =
V (GA) \ Vw and V (G⊥) = V (GD) \ Vw, respectively.

Theorem 5.1: All connections (a, d) (for a ; d), where
a ∈ G> and d ∈ G⊥, are covered by L. 2

Proof Sketch: Suppose there exists an uncovered connec-
tion (a, d) by L, where a ∈ G> and d ∈ G⊥. Because re-
moving all k centers, w1, w2, · · · , wk, will disconnect G>

and G⊥ in G, there must be a center wi, where 1 ≤ i ≤ k,
on the path from a to d. In other words, there must exist
two connections (a, wi) and (wi, d) in G. Therefore, if there
is connection, (a, d), it must be covered by L. 2

Example 5.1: To continue Example 4.1. Figure 7 shows
G with GA and GD and Gc. The node-separator Vw =
{n2, n5, n6} is shown in Figure 8(a). There are three 2-
hop clusters shown in Figure 8 based on the node-separator.
Then, we obtain two induced subgraphs, G> and G⊥ where
V (G>) = {n1, n3, n4} and V (G⊥) = {n7, n8, n9, n10}. Note
that all connections between G> and G⊥ are covered by the
three 2-hop clusters shown in Figure 8. 2

R-Tree Based Implementation
With Vw = {w1, w2, · · · , wk}, we discuss how to compute the
2-hop cover, L, that is S(Aw1

, w1, Dw1
), S(Aw2

, w2, Dw2
),

· · · , S(Awk
, wk, Dwk

). This can be done using our R-tree

n1

n2

n9

n8

n10

n4 n5

n7

n3

n6
G

T

GT

(a) Node-Separator

n10n9

n2n1 n4

n6

n8
(b) n6

n10n8

n1 n3

n5

n7
(c) n5

n7

n2

n1

(d) n2

Figure 8: 2-hop clusters Based on a Node-Separator

based approach given in [6]. We review main techniques
used in [6], which compute the 2-hop cover for a DAG. (Re-
call: the 2-hop cover for an arbitrary directed graph can
be obtained from the 2-hop cover of its corresponding DAG
with a simple pre- and post-processing step as discussed in
[6].)

It uses a 2-dimensional reachability map that maps a con-
nection (a, d) onto a grid point in a 2-dimensional grid and
any 2-hop cluster S(Aw, w, Dw) into a number of rectangles
in the 2-dimensional space. The reachability map operates
on a reachability table which is developed from a technique
for transitive closure management in [1].

For the given DAG G, the transitive closure management
technique in [1] assigns an interval label to each node v in
G. The interval label on each node v comprises a set of non-
overlapping intervals {[s1, e1], [s2, e2], · · · , [sn, en]}, denoted
by I↓

v , and a unique postorder number, po↓v. We omit the
detail of how to generate such interval labeling for G due to
the limit of space. Then, u ; v is true iff po↓v is contained in
some interval [s, e] in I↓

u, that is, s ≤ po↓v ≤ e. This is due to
the fact that each number in I↓

u corresponds to a postorder
number of a node v such that v is in desc(u) in G, and those
postorder numbers of all nodes in desc(u) are contained in
I↓

u. For reachability table, we construct the interval labeling
for G as well as the interval labeling for another auxiliary
graph G↑. In brief, G↑ is obtained from G by reversing the
direction of each edge in G. We denote the set of intervals
in G↑ assigned to v as I↑

v , and its unique postorder number
as po↑v. In term of G, each number in I↑

v corresponds to
a postorder number of a node u such that u is in ancs(v),
and those postorder numbers of all nodes in ancs(v) are
contained in I↑

v . For the sample graph in Figure 1(a), the
reachability table is in Table 1.

w G G↑

po↓
w I↓

w po↑
w I↑

w

n1 10 [1,10] 4 [4,4]
n2 3 [1,6] 5 [4,5]
n3 8 [4,8] 1 [1,1][4,4]
n4 9 [1,2][4,4][6,6][9,9] 6 [4,4],[6,6]
n5 7 [4,7] 2 [1,2][4,4]
n6 2 [1,2][4,4][6,6] 7 [4,7]
n7 5 [4,5] 3 [1,5]
n8 6 [4,4][6,6] 8 [1,2][4,8]
n9 1 [1,1][4,4] 9 [4,7][9,9]
n10 4 [4,4] 10 [1,10]

Table 1: The Sample Reachability Table
With the reachability map, for all nodes v, we consider

po↓v to be a number being mapped on x-axis and po↑v to be
a number being mapped on y-axis. Any grid point (x, y)
in the two dimensional space will uniquely represent a node
pair (u, v) s.t. there are po↓v = x and po↑u = y. Therefore,
any 2-hop cluster S(Aw, w, Dw) will cover a set of connec-
tions that are represented as a number of rectangles in the
two dimensional space, for Dw and Aw to be represented as
intervals on x-axis and y-axis, respectively. A covered area
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Figure 9: The Reachability Map

in the two dimensional space is maintained and represent
the set of connections covered. The 2-hop cover program
identifies the best 2-hop cluster in each iteration as the cor-
respondent rectangles with the largest uncovered area, based
on Eq. (3). R-tree is used in this process.

Let’s consider Vw = {w1, w2, · · · , wk}. We search for the
best S(Awi , wi, Dwi ), which corresponds to some rectangles
with the largest total area among all 2-hop clusters that
can be obtained from Vw. We add those rectangles into
the R-tree, and remove wi from Vw. Then, we search for the
next best S(Awj , wj , Dwj ), whose rectangles have no overlap
with those rectangles maintained in the R-tree. The R-tree
is updated by adding those rectangles and Vw is updated
by removing wj from itself. We repeat the above operation
till Vw becomes empty. Those identified 2-hop clusters are
included into L.

Example 5.2: Reconsider Example 5.1. Here, the node-
separator is Vw = {n2, n5, n6}. We search for 2-hop clus-
ters using Vw. Figure 9 shows the steps. In each figure,
the dark area represents the set of connections covered; the
striped area represents connections that can be newly cov-
ered by the identified 2-hop cluster; the shadowed area rep-
resents the set of connections remained to be covered. The
crossed points are self-loop covered by some 2-hop cluster.
Initially, rectangles of S(An6

, n6, Dn6
) is identified to have

the largest area in the two-dimensional space, as shown in
Figure ??. S(An6

, n6, Dn6
) is shown in Figure 8(b). Next,

rectangles of S(An5
, n5, Dn5

) is found to be the second large
area, with dark area not counted (Figure 8(c)). Finally,
S(An2

, n2, Dn2
) is found. 2

A potential problem still exists for the R-tree based im-
plementation for CrossCover(Gc, G, H). When G is large
and dense, Vw becomes large. In order to construct 2-hop
clusters using nodes in Vw, we need to maintain a great
number of rectangles in the R-tree to represent the covered
connections. It is required that no two rectangles can be
overlapped [6] to correctly compute 2-hop clusters based on
Eq. (3). And it is difficult to minimize the number of rect-
angles in the R-tree [13]. The R-tree needs to be used to
operate on a great number of rectangles. This makes it dif-
ficult to use the R-tree based approach to support very large
graphs efficiently.

6. CROSSCOVER: AN EDGE-ORIENTED
APPROACH

In the previous section, we discuss a node-oriented ap-
proach that uses a node-separator to disconnect two sub-
graphs. The node-oriented approach first identifies a set of
centers Vw, which is a subset of V (Gc). In other words,
the set of centers, Vw, is fixed. It then concentrates on
selecting the best S(Awi , wi, Dwi), for wi ∈ Vw, in each it-
eration in the 2-hop cover program. It needs to take the

w2 w4 w6w5w3w1
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u1 u2

v2 v3 v4

u3 u4

(a) Edges

w1 w2 w3

v1

u1
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Figure 10: Edge-Separator

entire graph Gc into consideration, when constructing the
best S(Awi , wi, Dwi).

In this section, we discuss an edge-oriented approach. We
explain it below. Recall the induced graph Gc which serves
as connections between GA and GD, and we now consider
it to be a bipartite graph B(U ∪ V, Ec), where U ∈ V (Gc)
consists of all nodes from GA and V ∈ V (Gc) consists of all
nodes from GD, and Ec consists of the set of edges (u, v)
s.t. u ∈ U and v ∈ V . Figure 10 (a) illustrates a bi-
partite graph B(U ∪ V, Ec) where U = {u1, u2, u3, u4} and
V = {v1, v2, v3, v4}. Ec contains 6 edges. We conceptu-
ally consider an edge, for example (u1, v1), as a node by
assigning an additional virtual node w1 on the edge, and re-
place (u1, v1) by (u1, w1) and (w1, v1). Here, the additional
virtual node, say w1, represents an edge (u1, v1). In Fig-
ure 10 (a), there are possibly 6 additional virtual nodes, wi,
for 1 ≤ i ≤ 6. When computing 2-hop cover L based on Gc,
we concentrate on these additional virtual nodes, wi. The
two main advantages are discussed below. (1) We do not
need to fix Vw as a set of centers first and then compute
2-hop cover as the node-oriented approach does. We can
possibly compute 2-hop cover with high compression rate,
because we select centers and compute 2-hop cover at the
same time. (2) We can compute fast, because those addi-
tional virtual nodes do not belong to other subgraphs, GA

and GD. As we discuss later, we do not need to use R-tree
and can manipulate the interval labeling.

A question is whether we need to add additional nodes
that do not appear in the original graph, G, but are needed
as a part of the 2-hop cover computed. The answer is: there
is no need to add any virtual nodes into the 2-hop cover
computed. In our algorithm, we dynamically cluster nodes
in U (V ) and make them connect to a single node in the
other U (V ). Consider Figure 10 (b), where v1 and v2 are
clustered together to connect to u1 via w1. The node w1

represents the edge, but it has a node u1 on the upper side.
The function of w1 can be replaced by u1.

Example 6.1: Reconsider Example 4.1. Its GA, GD and B
can be found in Figure 7. The edge-separator {w6, w2, w5}
is computed (Figure 11(a)). There are three 2-hop clus-
ters shown in Figure 11 based on the edge-separator, which
is slightly better than the result computed by the node-
oriented approach (Figure 8). As can be seen in Figure 11,
there are no additional nodes. n6, n2, and n5 can serve the
same role for w6, w2, and w5, respectively. 2

6.1 Two Properties
Given the edge-separator, we compute a 2-hop cover L

for all cross-partition connections (u, v) where u ∈ GA and
v ∈ GD. Consider a bipartite graph B(U ∪ V, Ec). Let all
neighbors of u ∈ U in B be neighbor(u) = {v1, v2, · · · , vl} ⊆
V .

We discuss two properties on the set of cross-partition
connections covered by S(Av1

, v1, Dv1
), S(Av2

, v2, Dv2
), · · · ,
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Figure 12: 2-hop clusters on B

S(Avl
, vl, Dvl

) and S(Au, u, Du), where neighbor(u) = {v1,
v2, · · · , vl}. The properties enable us to dynamically main-
tain just one node set Du, for u ∈ U , and one node set
Av, for v ∈ V , in order to correctly compute S(Aw, w, Dw),
where w ∈ U ∪ V . And only Av1

, Av2
, · · · , Avl

need to be
updated when S(Au, u, Du) is picked out. As will be seen
latter, it can be done efficiently based on a set of intervals
assigned to each node in B.

Property 6.1: Given S(Av1
, v1, Dv1

), S(Av2
, v2, Dv2

), · · · ,
S(Avl

, vl, Dvl
) and S(Au, u, Du) to cover connections (a, d)

where a ∈ V (GA) and d ∈ V (GD) and neighbor(u) = {v1,
v2, · · · , vl}, then Au = (Av1

∪ Av2
∪ · · · ∪ Avl

) ∩ ancs(u).
2

Proof Sketch: For any node a ∈ Au, there must be an
uncovered cross-partition connection (a, d), where d ∈ Du.
As depicted in Figure 12(a), a is in Au, the area circled by
dotted line on u; and d is in Du, the area circled by solid
line on u. Because all the neighbors of u on the partition
GD are v1, v2, · · · , vl, there must exist some vi, where 1 ≤
i ≤ l, and d ∈ desc(vi). Since there is an edge (u, vi),
there should be a ∈ ancs(vi). Also, because (a, d) is not
covered, it should be covered by S(Avi , vi, Dvi). Therefore,
we have a ∈ Avi and d ∈ Dvi . As depicted in Figure 12(a),
a should be also in Avi , the area circled by solid line on
vi; and d is in Dvi , the area circled by dotted line on vi.
Thus, we have Au ⊆ Avi ∩ ancs(u) for 1 ≤ i ≤ l, that
is, Au ⊆ (Av1

∪ Av2
∪ · · · ∪ Avl

) ∩ ancs(u). On the other
hand, for any node a ∈ (Av1

∪ Av2
∪ · · · ∪ Avl

) ∩ ancs(u),
it means there must exist vi, where 1 ≤ i ≤ l, and a ∈ Avi .
And, there must be an uncovered cross-partition connection
(a, d), where d ∈ Dvi . Note: there is an edge (u, vi), there
should be d ∈ desc(u). In addition, we have a ∈ ancs(u).
Because (a, d) is not covered, so it should be covered by
S(Au, u, Du). Therefore, we have a ∈ Au and d ∈ Du.
This case is also indicated by Figure 12(a). So we also have
(Av1

∪Av2
∪ · · · ∪Avl

) ∩ ancs(u) ⊆ Au. 2

Similarly, let u1, u2, · · · , ul ∈ U be all neighbors of v ∈ V
in B, such that neighbor(v) = {u1, u2, · · · , ul}. Property 6.1
can be also applied and we have Dv = (Du1

∪Du2
∪ · · · ∪

Dul
) ∩ desc(u). By maintaining Du or Av where u ∈ U or

v ∈ V , Property 6.1 allows us to compute S(Au, u, Du) or
S(Av, v, Dv) on the fly based on either Avi or Dui of its
neighbors in B, respectively.

We discuss another property that guarantees the correct-
ness of maintaining all Du or Av dynamically. Note: We
need to update B while the 2-hop cover program proceeds.
Each time when S(Au, u, Du) is picked out, we remove u
together with all edges being incident to u from B. When
the time comes to pick S(Au, u, Du), let v1, v2, · · · , vl ∈ V
be all neighbors of u ∈ U in B before the update and
S(Av1

, v1, Dv1
), S(Av2

, v2, Dv2
), · · · , S(Avl

, vl, Dvl
) be those

2-hop clusters before we pick out S(Au, u, Du). By then,
there are connections of S(Au, u, Du) not covered .

Property 6.2: After all connections of S(Au, u, Du) are
covered, new 2-hop clusters S(A′

v1
, v1, D

′
v1

), S(A′
v2

, v2, D
′
v2

),
· · · , S(A′

vl
, vl, D

′
vl

) can be obtained by computing A′
vi

based
on A′

vi
= Avi \Au and D′

vi
with Property 6.1 on the updated

B, where 1 ≤ i ≤ l. 2

Proof Sketch: Note that for all new 2-hop clusters ob-
tained above, there is S(A′

vi
, vi, D

′
vi

) ⊂ S(Avi , vi, Dvi). We
only need to prove (1) all connections of S(A′

vi
, vi, D

′
vi

) are
not covered by S(Au, u, Du), and (2) all connections covered
by S(Avi , vi, Dvi) but not by S(A′

vi
, vi, D

′
vi

) are covered by
S(Au, u, Du).

Since for any connection (a, d) covered by S(A′
vi

, vi, D
′
vi

),
we have a /∈ Au due to a ∈ Avi \ Au, hence (a, d) can not
be covered by S(Au, u, Du). So (1) holds. This is illustrated
by Figure 12(b) when a is outside the shaded area in Avi .
Assume (a, d) is a connection covered by S(Avi , vi, Dvi) but
not by S(A′

vi
, vi, D

′
vi

). Then, for a, there should be a ∈
Avi ∩Au, hence we have a ∈ Au. a for this case is depicted
as in the shadowed area in Figure 12(b). For d, since we have
d ∈ desc(vi) and there exists an edge (u, vi), hence d ∈ Du.
Therefore, S(Au, u, Du) covers all such connections (a, d).
Those (a, d) are seen as those contained in the shadow area
of Figure 12(b). Then, (2) holds. 2

Similarly, if S(Av, v, Dv) is to be picked out, let u1, u2,
· · · , ul ∈ U be all neighbors of v ∈ V in B before the
update. After we newly cover uncovered connections with
S(Av, v, Dv), Property 6.2 can be also applied and new 2-
hop clusters S(A′

u1
, u1, D

′
u1

), S(A′
u2

, u2, D
′
u2

), · · · , S(A′
ul

,
ul, D′

ul
) can be obtained by computing D′

ui
based on D′

ui
=

Dui \Dv and A′
ui

with Property 6.1 on updated B, where
1 ≤ i ≤ l.

In our algorithm, initially, let Du = desc(u)∩D, for u ∈ U ,
and Av = ancs(u) ∩ A, for v ∈ V , where A and D are
the set of nodes in GA and GD respectively. Then, by the
two properties, we can compute every S(Aw, w, Dw), where
w ∈ U ∪ V , with Du, for u ∈ U , and Av, for v ∈ V , as well
as correctly maintain those Av and Du during a 2-hop cover
program to compute L to cover all (a, d) where a ∈ GA and
d ∈ GD. To avoid costly set operations, we process it using
interval labelings.

6.2 Interval Based Computing
We give some definitions and notations. Assume I is a

set of non-overlapping intervals and it can be I↓
v or I↑

v for
a node v as obtained in Section 5. Let |I | to be the size of

I = {[s1, e1], [s2, e2], · · · , [sn, en]} and |I | =
nP

i=1

(ei − si +

1). Given a set of nodes A ∈ V , we use I↑(A) and I↓(A)
to denote a set of non-overlapping intervals which includes



those po↑v and po↓v as described in Section 5 for each v ∈ A,
respectively. We also define the set difference of two sets of
intervals I1 and I2, denoted by I1 	 I2, which is the set of
non-overlapping intervals including all numbers included in
I1 but I2. We further define the union of two sets of intervals
I1 and I2, denoted by I1tI2, to be the set of non-overlapping
intervals including those numbers either included in I1 or in
I2. The overlap of two sets of intervals I1 and I2, denoted by
I1 u I2, is defined to be the set of non-overlapping intervals
including those numbers both included in I1 and I2 in the
same time. We implemente those interval sets as sorted lists
in the order of start value si for each interval [si, ei]. The last
three operations can be done efficiently in a similar manner
to the sort-merge join.

Compute S(Aw, w, Dw) Based on Intervals: We main-
tain a set of interval set for each node in B, denoted as
Î↓

u for u ∈ U , and Î↑
v for v ∈ V , respectively. Specifically,

Î↓
u includes all po↓d for d ∈ Du and Î↑

v includes all po↑a for
a ∈ Av. Based on Property 6.1 and Property 6.2, we can
compute every S(Aw, w, Dw) for w ∈ U ∪V based on Î↓

u and

Î↑
v with the reachability table described in Section 5, and we

can correctly maintain those Î↓
u and Î↑

v during a 2-hop cover
program to compute L to cover all (a, d) where a ∈ GA and
d ∈ GD.

Let all neighbors of u ∈ U in B be v1, v2, · · · , vl ∈ V .
Property 6.1 can be easily extended to the set of intervals
Î↑

u to include all po↑a such that a ∈ Au. It can be obtained
by

Î↑
u = Î↑

v1
t Î↑

v2
t · · · t Î↑

vl
u I↑

u (4)

In addition, Property 6.2 can also be extended to work with
intervals. When S(Au, u, Du) is newly picked out to cover

connections, we only need to update Î↑
vi

by

Î↑
vi

= Î↑
vi
	 Î↑

u (5)
Let u1, u2, · · · , ul ∈ U be all neighbors of v ∈ V in B.

Similarly, for Property 6.1 we have

Î↓
v = Î↓

u1
t Î↓

u2
t · · · t Î↓

ul
u I↓

v (6)

And for Property 6.2 we have

Î↓
ui

= Î↓
ui
	 Î↓

v (7)

With the computed Î↑
u and Î↓

u, Au and Du can be obtained
by mapping all po↓d ∈ Î↑

u and po↑a ∈ Î↓
u to the corresponding

a and d to be added into Au and Du, respectively, using
the reachability table. Initially, since there is no connection
covered yet, we let Î↓

u = I↓
u u I↓(V (GD)) for each u ∈ U and

Î↑
v = I↑

v u I↑(V (GA)) for each v ∈ V .

Calculate Eq. (3) Based on Intervals: The value of
Eq. (3) for S(Aw, w, Dw) is the number of uncovered con-
nections that can be covered by it. Note that the total
number of connections that S(Aw, w, Dw) can cover is sim-

plified as |Î↓
w| × |Î

↑
w|. Among them, we still need to know

how many connections are already covered, that is, the over-
lapped connections of S(Aw, w, Dw). This can be obtained
with the reachability map and a covered area as rectangles
maintained in the R-tree [6] or with set operations and a
set of covered connections so far [7, 18, 19]. However, for
graphs with millions of nodes, those operations are all too
expensive. We use a simple method based on interval to
calculate this value approximately. Though this is not the
exact value of Eq. (3), it provides a proper estimate under
most circumstances.

Algorithm MaxCardinality-I

Input: a DAG, G, the bipartite graph B(U, V, Ec) built
from an edge-separator Ec of G.

Output: the cover L that covers all cross-partition connections
between GA and GD.

1: compute the reachability table of G;

2: assign a set of intervals to each u ∈ U as Î↓
u = I↓

u ∩ I↓(D)

and to each v ∈ V as Î↑
v = I↑

v ∩ I↑(A);

3: L← ∅; I
↓

D′ ← ∅; I
↑

A′ ← ∅;
4: while U ∪ V 6= ∅ do

5: let w ∈ U ∪ V be the node with the max value of

Eq. (8); {we compute |Î↑
w | for w ∈ U based on

Eq. (4) or |Î↓
w| for w ∈ V based on Eq.( 6).}

6: for all a s.t. po↑
a is included in Î↑

w do

7: update L by Lout(a)← Lout(a) ∪ {w};

8: for all d s.t. po
↓

d
is included in Î↓

w do

9: update L by Lin(d)← Lin(d) ∪ {w};

10: I
↓

D′ ← I
↓

D′ t Î↓
w ; I

↑

A′ ← I
↑

A′ t Î↑
w ;

11: let x1, x2, · · · , xl be the nodes adjacent to w in B;
update the interval sets assigned to x1, x2, · · · , xl

by Eq. (5) or Eq. (7);
12: update B by removing from B the node w together

with all edges being incident to w and any node
with its degree to be zero in B;

13: end while

14: return L;

Figure 13: An Interval Based Algorithm

Assume A′ and D′ to be respectively the union of all
Av and Dv of previous 2-hop clusters that are decided in
a 2-hop cover program. Among all connections covered by
S(Aw, w, Dw), we estimate the overlapped connections to
be all (a, d) s.t. a ∈ A′ ∩ Aw and d ∈ D′ ∩ Dw. And it is
likely that those connections are covered by previous 2-hop
clusters. Based on intervals, the number of overlapped con-
nections is |Î↓

u u I↓(D′)| × |Î↑
u u I↑(A′)|. We maintain two

set of intervals I↓
D′ and I↑

A′ which are the union of all I↓
v or

I↑
v of identified 2-hop clusters in the 2-hop cover program,

respectively. It is clear to see that I↓(D′) and I↑(A′) are

identical to I↓
D′ and I↑

A′ , respectively. Therefore, Eq. (3)
can be calculated by the following equation.

|Î↓
w| × |Î

↑
w| − |Î

↓
w u I↓

D′ | × |Î
↑
w u I↑

A′ | (8)

6.3 Algorithm
We give our algorithm to perform the detachment step

based on intervals in Figure 13, called MaxCardinality-I,
because it chooses 2-hop clusters based on the number of
covered connections according to Eq. (3). The efficiency of
MaxCardinality-I is improved over the R-tree approach. We
don’t need to use and maintain the R-tree and we use the
operations over intervals, such as Eq. (4), Eq. (5), Eq. (6)
and Eq. (7). We do not have to perform set operations to
compute 2-hop clusters as in [7, 18, 19].

MaxCardinality-I takes graph G and a bipartite graph
B(U, V, Ec), which is graph Gc as described in Section 4
as input. In line 1, it computes the reachability table of G
in order to obtain I↑ and I↓ for each node in B. Then we
set the initial value of Î↑ or Î↓ for each node in line 2. Line
3 also initializes L to be empty. Line 4 to line 13 is the main
body to compute L: we pick a 2-hop cluster at line 5, for Î↓

w

or Î↑
w represents Dw or Aw. Line 6 to line 9 add w into all

Lout(a) and Lin(d). Then we update I↑
A′ , I↓

D′ , Î↑, Î↓ and B
from Line 10 to line 12. To update B, we also remove nodes
with zero degree, since the Î↓

u or Î↑
v is then zero. Note that
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there are V> = A and V⊥ = D for the remaining processing,
since we compute the cover L based on an edge-separator.

Example 6.2: Major steps of the edge-oriented approach of
CrossCover() for our running example are shown in figures
from Figure 14 to Figure 16. Each figure shows those Du and
Î↓

u for u ∈ U , Av and Î↑
v for v ∈ V , the bipartite graph B,

and the covered intervals I↑
A′ and I↓

D′ , if they are not empty.
All nodes u (or v) in every entry Du (or Av) of Figure 14(a)
(or (b)) are represented as numbers po↓u (or po↑v) included
in the intervals in the corresponding entry of Figure 14(c)
(or (d)), which can be referred to Table 1. Note that the
Du or Av of in Figure 14(a) or 14(b) do not need to be
maintained explicitly, they are shown only for explanation.
We only maintain I↑

A′ and I↓
D′ as shown in Figure 14(a)

and Figure 14(b) when computing the CrossCover(). Above
description also applies to those in Figure 15 and Figure 16.
We give detailed description for each step until we finished
computing the CrossCover() as below. 2

The Begining: As shown in Figure 14, for u ∈ U and
v ∈ V , Du and Av consists of all of its descendants or an-
cestors in GD and GA, respectively. They are shown in Fig-
ure 14(a)(b). Those Î↓

u and Î↑
v are initially computed based

on Î↓
u = I↓

uuI↓(D), which are shown in Figure 14(c)(d). I↑
A′

and I↓
D′ are both empty.

Step 1: Consider the six candidates of centers in Figure 14(e).
We want to get the 2-hop clusters of all nodes from Fig-
ure 14(c)(d). That is, to obtain S(Aw, w, Dw) with only
Aw or Dw for each node, which is possible based on Prop-
erty 6.1. With the computed Î↑

w and Î↓
w, Aw and Dw are

Î↓
n6

= Î↓
n2
t Î↓

n4
u {[1, 2][4, 4][6, 6]} = {[1, 2][4, 4][6, 6]}

Î↓
n7

= Î↓
n2
t Î↓

n5
u {[4, 5]} = {[4, 5]}

Î↓
n8

= Î↓
n5
u {[4, 4][6, 6]} = {[4, 4][6, 6]}

Î↑
n2

= Î↑
n6
t Î↑

n7
u {[4, 5]} = {[4, 5]}

Î↑
n4

= Î↑
n6
u {[4, 4][6, 6]} = {[4, 4][6, 6]}

Î↑
n5

= Î↑
n7
t Î↑

n8
u {[1, 2][4, 4]} = {[1, 2][4, 4]}

Table 2: Step 1: Compute I↑
u and I↓

v

known for S(Aw, w, Dw). We could get all nodes in Î↑
w

and Î↓
w with the reachability table. For example, we have

Î↓
n6

= {[1, 2][4, 4][6, 6]} and there are 1, 2, 4 and 6—four

po↓ numbers for some nodes. From Table 1, n9, n6, n10

and n8 belong to those po↓ numbers. On the other hand,
Î↑

n6
= {[4, 7]} and there are 4, 5, 6 and 7—four po↑ numbers

for some nodes. From Table 1, n1, n2, n4 and n6 belong

to those po↑. To find a best S(Aw, w, Dw), Eq.( 8) is used

here. It only involves the known Î↑
w and Î↓

w for each node,
and I↑

A′ and I↓
D′ which we explicitly maintain. After we

pick the best w and the associated Î↑
w and Î↓

w, we restore
a corresponding S(Aw, w, Dw) with reachability table. In
this step,n6 is picked out. We identify S(An6

, n6, Dn6
) =

S({n1, n2, n4, n6}, n6, {n6, n7, n8, n10}) (Figure 11(b)).
Then, we update B and intervals of its adjacent nodes

with the set of intervals computed based on Property 6.1.
In this step, Î↓

n6
= {[1, 2][4, 4][6, 6]}. We do updates based

on Property 6.2 for all adjacent nodes of the center w on
B. In this step, they are n2 and n4. We further find that
n4 needs no update. Because n4 will be disconnected in
B after B is update by removing n6, which means n4 can
acquire no intervals based on Property 6.1. We do update
on n2 by Î↓

n2
= Î↓

n2
− Î↓

n6
= {[1, 6]} 	 {[1, 2][4, 4][6, 6]} =

{[3, 3][5, 5]}. This is equivalent as Dn2
= Dn2

− Dn6
=

{n2, n6, n7, n8, n9, n10} − {n6, n7, n8, n10} = {n2, n7}. B is

updated as in Figure 15(e). And I↑
A′ = I↑

A′ t Î↑
n6

= {[4, 7]}

and I↓
D′ = I↓

D′ t Î↓
n6

= {[1, 2][4, 4][6, 6]}.

Step 2 Based on Property 6.1, we compute Aw or Dw for
each node on Figure 15(e).

Î↓
n7

= Î↓
n2
t Î↓

n5
u {[4, 5]} = {[4, 5]}

Î↓
n8

= Î↓
n5
u {[4, 4][6, 6]} = {[4, 4][6, 6]}

Î↑
n2

= Î↑
n7
u {[4, 5]} = {[4, 5]}

Î↑
n5

= Î↑
n7
u Î↑

n8
{[1, 2][4, 4]} = {[1, 2][4, 4]}

Table 3: Step 2: Compute I↑
u and I↓

v

With the computed Î↑
w and Î↓

w for each node, we consider
the value of Eq. (8). Particularly, for S(An8

, n8, Dn8
), the

value of Eq. (8) is computed as |Î↓
8 |× |Î

↑
8 |− |Î

↓
8 u I↓

D′ |× |Î
↑
8 u

I↑
A′ | = 7×4−|{[4, 4][6, 6]u{[1, 2][4, 4][6, 6]}|×|{[1, 2][4, 8]}u
{[4, 7]}| = 7 × 4− |{[4, 4][6, 6]}| × |{[4, 7]}| = 5. This is be-
cause S(An8

, n8, Dn8
) can cover total 14 connections , how-

ever, 8 connections are already covered by some existing 2-
hop clusters. S(An5

, n5, Dn5
) can cover total 12 connections

, however, only 2 connections are already covered, where the
number of newly covered connections can be obtained by
Eq. (8) to be 2. So S(An5

, n5, Dn5
) is restored with Î↑

5 and

Î↓
5 . And S(An5

, n5, Dn5
) = ({n1, n3, n5}, n5, {n5, n7, n8, n10}).

It is shown in Figure 11(c). We then update intervals of its

adjacent nodes. Î↑
n7

= {[1, 5]} 	 {[1, 2][4, 4]} = {[3, 3][5, 5]}.

Î↑
n8

is isolated and needs no update. B is updated( Fig-

ure 16(e)). I↑
A′ and I↓

D′ are updated(Figure 16(f)).



Step 3: Consider the four candidates of centers in Fig-
ure 16(e). Î↓

n7
= Î↓

n2
u {[4, 5]} = {[5, 5]} and Î↑

n2
= Î↑

n7
u

{[4, 5]} = {[4, 5]} We have Dn7
= {n2} and An2

= {n7}. So
S(An2

, n2, Dn2
) and S(An7

, n7, Dn7
) cover the same num-

ber of connection, to break the tie arbitrarily, n2 is picked
out, and B is updated to be empty. Figure 11(d) shows the
S(An2

, n2, Dn2
) identified. All connections between G> and

G⊥ are now covered.

7. PERFORMANCE EVALUATION
We conducted extensive experiment studies to evaluate

the performance of different approaches for 2-hop cover con-
struction, including divide-and-conquer approaches and the
fast R-tree approach with no graph partitioning [6]. Specifi-
cally, we implemented algorithms of the existing bottom-up
strategies [18, 19]. We use PM to illustrate the performance
of the approach in [18] and PM+ the approach in [19], for
they both employ a bottom-up strategy as partitioning and
merging, while the latter further uses an auxiliary 2-hop
cover of PSG. For our top-down strategy, we use DR to
denote the R-tree method and DI the interval method for
CrossCover() computation . The R-tree approach [6] will be
showed as R for performance compare. All those algorithms
are implemented using C++.

We generated various synthetic data using two graph gen-
erators, namely, the random directed graph generator named
GraphBase developed by Knuth [16] and the random di-
rected acyclic graph generator DAG-Graph developed by
Johnson baugh [15]. We vary two parameters, |V | and |E|,
in the two generators, and use the default values for the
other parameters. We also tested several large XML graphs
as the real datasets, including XMark [20] and DBLP1.

We conducted all the experiments on a PC with a 3.4GHz
processor, 180G hard disk and 2GB main memory running
Windows XP.

7.1 Exp-1: General Directed Graphs
To compare the performance of the five algorithms to com-

pute 2-hop covers, we conduct experiments on random di-
rected graphs generated by GraphBase. 4 sets of graphs are
generated for this purpose and graphs in each sets contain
the same number of nodes and edges but with various seeds
for the random graph generator. The graphs in the first set
have 20, 000 nodes and 30, 000 edges, denoted by G1; those
in the second set have 40, 000 nodes and 60, 000 edges, de-
noted by G2; those in the third set have 60, 000 nodes and
90, 000 edges, denoted by G3; while those in the last set have
80, 000 nodes and 120, 000 edges, denoted by G4. We show
the performance on one graph for each set. The node num-
ber in each partition of original graph is limited to be under
10, 000. For PM+, it needs to partition PSG for G3 and
G4. Particularly, we found it is hard to compare the perfor-
mance of PM, for it needs a lot of time in the cover joining
phase but results in low compression rate. It needs to con-
struct 2-hop clusters based on all ancestors and descendants
in the whole graph for all end nodes of cross-partition edges.
Those 2-hop clusters can be very large, since those sets of
ancestors and descendants in G can be very large. For ex-
ample, the smallest given graphs G1 has total 24, 172, 802
connections, PM spends 237.74 seconds and obtains a cover
size of 29, 233, 309, which is larger than the total number of

1http://dblp.uni-trier.de/xml/
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connections in the graph. We illustrate performance of its
updated version PM+ only in Figure 17.

In Figure 17(a), as the scale of the underlying graph in-
creases, the 2-hop cover construction time required by the
top-down strategy increases sharply. There are some rea-
sons: All processing are based on the transitive closure of
the graph with set operations; it also needs to mandatorily
construct a number of 2-hop clusters based on a large num-
ber of nodes as those ancestors and descendants for all end
nodes on cross-partition edges in some partition, as well as
to further partition and compute the 2-hop covers for PSGs
recursively for large graphs. In addition, due to the recur-
sively partitioning and repeatedly cover joining for PSGs,
the extra space consumption for correlated 2-hop labeling
can be multiplied. In Figure 17(b) for PM+, there is even a
decline regarding the compression ratio for G3 and G4. For
other approaches, Figure 17 can not produce a clear differ-
ence between them. Take G4 as an example, PM+ consumes
as much as 706 second, while R, DR and DI only spend 24,
17 and 48 seconds to achieve the compression rate as 4026,
3643 and 3100. This means the R-tree approach is still a
good choice for random general directed graphs with less
than 100, 000 nodes. We will test them with more challeng-
ing settings.

7.2 Exp-2: Dense DAGs
We tested dense DAGs. There is a high ratio of edge

number to node number and the graph can not be reduced
by collapsing strong connected components in it. We now
experiment on 6 sets of random directed acyclic graphs gen-
erated by DAG-Graph. We will follow the practice in the
previous experiment for the similarity of performance on all
graphs in a same set. Those DAGs are denoted by A1 to
A6. We fix the number of nodes in all graphs to be 20, 000
and increase the number of edges in each set of graphs. The
numbers of edges for for A1 to A6 are 30, 000, 40, 000, 50, 000,
60, 000, 70, 000 and 80, 000. We compare performance be-



tween the five algorithms in Figure 18.
For R and DR, Figure 18(a) shows that there is a sharp

rise in elapsed time when the number of edges in DAGs
increases. Though R and DR need less time than DI needs
on A1 and A2, they spend much more time than that of DI

for the remaining graphs. In Figure 18(b), the R, DR and DI

all tend to achieve large compression rate when the graph
becomes dense, and they perform similarly. Specifically, for
A6, R and DR spend 3, 752 and 1, 907 seconds to achieve
the compression rate as 14 and 12, respectively. But DI

only spends 79 seconds to gain the compression ratio as 10.
On the other hand, PM requires the least time, for there
are a relatively small number of nodes thus the transitive
closure can be relatively small. However, its compression
rate begins to decline under 1 from A5. Compared to PM,
PM+ displays better compression rate but needs more time
for computation. It takes 341 seconds to obtain 5 as the
compression rate on A6. Obviously, DI is a good choice for
large dense DAGs among all.

7.3 Exp-3: Large Graphs
To test large general graphs with nodes more than 100, 000,

we use GraphBase to generate 4 random general directed
graphs, denoted by L1 to L4. The sizes for L1 to L4 are as fol-
lows: 400, 000 nodes, 500, 000 edges and 4, 657, 410, 000 con-
nections for L1; 400, 000 nodes, 600, 000 edges and 2, 669,670,
000 connections for L2; 500, 000 nodes, 600, 000 edges and
6, 867,920,000 connections for L3; 500, 000 nodes, 700, 000
edges and 13,737,200,000 connections for L4. Since R, DR

and DI outperform PM and PM+ largely on both general
directed graphs and DAGs, we will focus on R, DR and DI

below. Figure 19 shows the efficiency of the three algorithms
on large graphs. In each figure of Figure 19, the x-axis indi-
cates time efficiency and the y-axis indicates space efficiency
(the compression rate). A nice algorithm can result in points
to reside close to the top-left corner, in terms of both of the
two measurements. We can see from Figure 19 that DI is
such a nice algorithm in terms of time and space efficiency.
DI can be faster than R up to 2 orders of magnitudes. It
is also noticeably faster than DR. On the other hand, the
compression ratio of DI is the largest among those of the
others, while R outperforms DR slightly. This fact supports
the efficiency of our heuristics described in Section 4 for large
graphs. DI can possibly achieve a smaller 2-hop cover than
R( the algorithm without graph partitioning). For DI, there
are more centers to be searched than DR. And DI can obtain
more balanced bisection on graphs. This can explain there
are a loss of quality for DR when compared to DI. For the
4 graph, DI only uses 479.54, 317.66, 483.65 and 574.70 sec-
onds, while R, which does not partition the graph, requires
12, 999.76, 4, 122.77, 30, 121.69 and 9, 634.87 seconds. The
compression rate of DI can be as high as 14, 284.54 for L4.

7.4 Exp-4: XML and Real Datasets
We generated four XML datasets based on XMark bench-

mark [20] using four factors, 0.4, 0.6, 0.8, and 1.0, and name
them as X1, X2, X3, and X4, respectively. Then, for each
dataset, we generate a large graph by treating both parent-
child and ID/IDREF relationships as edges with no differ-
ence. We compare the performance of DI, the best algorithm
with graph partition, to R, the algorithm to compute 2-hop
covers without graph partitioning. The performance of R is
given as the one without graph partitioning. We can see in
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Figure 20 that DI is not only faster than R but also achieves
a higher compression rate than R does. The time consump-
tion of DI scales linearly in terms of the size of the datasets,
ranging from 530.56 to 1, 723.95 seconds. But for R, it ranges
from 13, 298.55 to 77, 170.60 seconds with a fast increasing
rate. For X4, which contains 1.67 million nodes and 169 bil-
lion connections, DI achieves a compression rate as high as
39, 492.28, while R is 31, 455.11 for that.

For the DBLP dataset, we get all nodes from elements
in the XML data and edges from all parent-child relation-
ships and bibliographic links. This DBLP graph contains
3, 170, 917 nodes with more than 4.352 billion connections.
R has spent a long time as 26, 592.53 seconds achieving a
compression rate of 1, 099.99. DI only requires 566 seconds
with a smaller compression rate as 751.72, which is still sat-
isfactory. The lower quality of DI can be explained that the
edges in DBLP graph are distributed very irregularly. Be-
cause bibliographic links can be concentrated to a certain
small number nodes, while there are also many nodes with
very few edges. Even when we perform a balanced bisection,
those 2-hop clusters are still not so good as those exhaus-
tively found by R. For such cases, a 2-hop cover program
with a large search space for 2-hop clusters like R can be
more space efficient.

8. RELATED WORK
There can be two simple solutions to process reachabil-

ity queries in a directed graph. They are (i) maintaining
the transitive closure of edges, which results in high stor-
age consumption, and (ii) the breadth- or depth-first search
to explore a connection from u to v in the given graph on



demand, which may incur high query-time processing cost.
Broadly speaking, almost all of proposed approaches con-
tain ingredients similar to either (i) or (ii) and may be a
tree-component method or not. We first discuss approaches
of (i) and then those of (ii).

Since the space requirement to explicitly store the edge
transitive closure is O(|V |2) and it can be prohibiting for
large graphs. So the method using an explicit storage of the
transitive closure to process reachability queries is imprac-
tical. Several works tried to compress the edge transitive
closure of a graph to explore a space- and time-efficient ap-
proach for graph reachability queries. For example, Agrawal
et al. studied efficient management of transitive relation-
ships in large databases [1] based on intervals. However, its
space requirement is O(|V |2), the same as that of the tran-
sitive closure for a graph. Cohen et. al studied reachability
labeling using 2-hop labels [7] based on 2-hop covers, a com-
pressed form of the edge transitive closure of a graph with
O(|V |·|E|1/2) space requirement. Unfortunately, computing
2-hop covers in [7] requires the edge transitive closure of a
graph to be computed first, which again can be too costly
to be practical for large graphs. Then, Schenkel et al. [18,
19] studied 2-hop cover problem and proposed a divide-and-
conquer approach. There are works with the tree-component
method. [12] and [23] use a tree labeling based on intervals
to encode all reachability relationships for a spanning tree
of the graph. For those remaining reachability relationships,
[12] computes a 2-hop cover to encode all connections that
can not be found in the tree, while [23] explicitly stores those
remaining reachability relationships in a transitive link ta-
ble to achieve constant time querying, at the cost of space.
Both of the two works in [12, 23] are motivated by the fact
that graphs being often used are large sparse graphs. While
in our work, we focus on computing reachability labelings
for arbitrary graphs which can be either sparse or dense.

For the prototype solution (ii) mentioned above to pro-
cess reachability queries in a directed graph, the querying
time can be in O(|V |) by the breadth- or depth-first search.
So works in [5, 21] first encodes reachability relationships
over a spanning tree generated by depth-first traversal of a
directed graph based on intervals. Second, for the reacha-
bility relationship that may exist over DAG but not in the
spanning tree, [5] and [21] employ search strategies triny to
explore a path at query time, which requires O(|E| − |V |)
time.

9. CONCLUSION
The 2-hop cover can compactly represent the whole edge

transitive closure of a graph, and be effectively used to an-
swer reachability queries between nodes in the graph. How-
ever, it is challenging to compute such a 2-hop cover for a
large graph. In this paper, we proposed a new top-down hi-
erarchical partitioning approach. We partition a graph into
two subgraphs repeatedly. We focus on 2-hop cover sensi-
tive partitioning, and proposed two approaches, namely, a
node-oriented approach and an edge-oriented approach that
use the computed 2-hop covers (precisely centers) to parti-
tion graph. We conducted extensive performance studies,
and confirmed that our approach significantly outperform
the existing approaches when a graph is large and dense.
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