Skip to main content

Distributed Spatial Clustering in Sensor Networks

  • Conference paper
Advances in Database Technology - EDBT 2006 (EDBT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3896))

Included in the following conference series:

Abstract

Sensor networks monitor physical phenomena over large geographic regions. Scientists can gain valuable insight into these phenomena, if they understand the underlying data distribution. Such data characteristics can be efficiently extracted through spatial clustering, which partitions the network into a set of spatial regions with similar observations. The goal of this paper is to perform such a spatial clustering, specifically δ-clustering, where the data dissimilarity between any two nodes inside a cluster is at most δ. We present an in-network clustering algorithm ELink that generates good δ-clusterings for both synchronous and asynchronous networks in \(O(\sqrt{N} {\rm log}N)\) time and in O(N) message complexity, where N denotes the network size. Experimental results on both real world and synthetic data sets show that ELink’s clustering quality is comparable to that of a centralized algorithm, and is superior to other alternative distributed techniques. Furthermore, ELink performs 10 times better than the centralized algorithm, and 3-4 times better than the distributed alternatives in communication costs. We also develop a distributed index structure using the generated clusters that can be used for answering range queries and path queries. The query algorithms direct the spatial search to relevant clusters, leading to performance gains of up to a factor of 5 over competing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The EROS data center for geological survey., http://edc.usgs.gov/geodata/

  2. Tropical atmosphere ocean project., http://www.pmel.noaa.gov/tao/

  3. Crossbow, Inc. Wireless sensor networks, http://www.xbow.com/

  4. Awerbuch, B.: Complexity of network synchronization. JACM 32(4), 804–823 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berry, J., Fleischer, L., Hart, W.E., Phillips, C.A.: Sensor placement in municipal water networks. World Water and Environmental Resources Congress (2003)

    Google Scholar 

  6. Chintalapudi, K.K., Govindan, R.: Localized edge detection in a sensor field. In: SNPA (2003)

    Google Scholar 

  7. Ciaccia, P., Patella, M., Zevula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB (1997)

    Google Scholar 

  8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the expectation-maximization algorithm. Journal of Royal Statistical Society 9(1), 1–38 (1999)

    MathSciNet  Google Scholar 

  9. Deshpande, A., Guestrin, C., Hong, W., Madden, S.: Exploiting correlated attributes in acquisitonal query processing. In: ICDE (2005)

    Google Scholar 

  10. Elnahrawy, E., Nath, B.: Context-aware sensors. In: Karl, H., Wolisz, A., Willig, A. (eds.) EWSN 2004. LNCS, vol. 2920, pp. 77–93. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Estrin, D., Govindan, R., Heidemann, J.: Next century challenges: Scalable coordination in sensor networks. In: MOBICOM (1999)

    Google Scholar 

  12. Ganesan, D., Estrin, D., Heidemann, J.: Dimensions:Why do we need a new data handling architecture for sensor networks? In: SIGCOMM (2003)

    Google Scholar 

  13. Ghanti, V., Ramakrishnan, R., Gehrke, J.: Clustering large datasets in arbitrary metric spaces. In: ICDE (1999)

    Google Scholar 

  14. Guestrin, C., Bodik, P., Thibaux, R., Paskin, M., Madden, S.: Distributed regression: An efficient framework for modeling sensor network data. In: IPSN (2004)

    Google Scholar 

  15. Han, J., Kamber, M.: Data mining: Concepts and techniques. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  16. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: MOBICOM (2003)

    Google Scholar 

  17. Kotidis, Y.: Snapshot queries: Towards data-centric sensor networks. In: ICDE (2005)

    Google Scholar 

  18. Li, Q., DeRosa, M., Rus, D.: Distributed algorithms for guiding navigation across a sensor network. In: MOBICOM (2003)

    Google Scholar 

  19. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. JACM 41(5), 960–981 (1997)

    Article  MathSciNet  Google Scholar 

  20. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional query processor for sensor networks. In: SIGMOD (2003)

    Google Scholar 

  21. Meka, A., Singh, A.K.: Distributed algorithms for discovering and mining spatial clusters in sensor networks. UCSB TechReport (2005)

    Google Scholar 

  22. Ng, A.Y., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. NIPS (2002)

    Google Scholar 

  23. Ng, R.T., Han, J.: Efficient and effective clustering methods for spatial data mining. In: VLDB (1994)

    Google Scholar 

  24. Ng, R.T., Han, J.: Efficient clustering methods for spatial data mining. In: VLDB (1997)

    Google Scholar 

  25. Olston, C., Loo, B.T., Widom, J.: Adaptive precision setting for cached approximate values. In: SIGMOD (2001)

    Google Scholar 

  26. Pourahmadi, M.: Foundations of time series analysis and prediction theory. Wiley, Chichester (2001)

    MATH  Google Scholar 

  27. Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: A multi-resolution clustering approach for very large spatial databases. In: VLDB (1998)

    Google Scholar 

  28. Wang, W., Yang, J., Muntz, R.R.: STING: A statistical information grid approach to spatial data mining. In: VLDB (1997)

    Google Scholar 

  29. Yi, B.K., Sidiropoulos, N.D., Johnson, T., Jagadish, H.V., Faloutsos, C.: Online data mining for co-evolving time sequences. In: ICDE (2000)

    Google Scholar 

  30. Younis, O., Fahmy, S.: HEED: A hybrid energy-efficient distributed clustering for adhoc sensor networks. INFOCOM (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meka, A., Singh, A.K. (2006). Distributed Spatial Clustering in Sensor Networks. In: Ioannidis, Y., et al. Advances in Database Technology - EDBT 2006. EDBT 2006. Lecture Notes in Computer Science, vol 3896. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11687238_57

Download citation

  • DOI: https://doi.org/10.1007/11687238_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32960-2

  • Online ISBN: 978-3-540-32961-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics