Abstract
Multi-agent systems (MASs) is an area of distributed artificial intelligence that emphasizes the joint behaviors of agents with some degree of autonomy and the complexities arising from their interactions. The research on MASs is intensifying, as supported by a growing number of conferences, workshops, and journal papers. In this survey we give an overview of multi-agent learning research in a spectrum of areas, including reinforcement learning, evolutionary computation, game theory, complex systems, agent modeling, and robotics.
MASs range in their description from cooperative to being competitive in nature. To muddle the waters, competitive systems can show apparent cooperative behavior, and vice versa. In practice, agents can show a wide range of behaviors in a system, that may either fit the label of cooperative or competitive, depending on the circumstances. In this survey, we discuss current work on cooperative and competitive MASs and aim to make the distinctions and overlap between the two approaches more explicit.
Lastly, this paper summarizes the papers of the first International workshop on Learning and Adaptation in MAS (LAMAS) hosted at the fourth International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS’05) and places the work in the above survey.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Byde, C.P.A., Jennings, N.: Decision procedures for multiple auctions. In: Proceedings of the 1st Int. Conf. Autonomous Agents and Multi-Agent Systems, AAMAS 2002 (2002)
Airiau, S., Sen, S.: Towards a pareto-optimal solution in general-sum games, study in 2x2 games. In: LAMAS (2005)
Alkemade, A., La Poutré, J., Amman, H.: On social learning and robust evolutionary algorithm design in economic games. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation (CEC 2005), pp. 2445–2452. IEEE Press, Los Alamitos (2005)
Alkemade, F., La Poutré, J.: Heterogeneous, boundedly rational agents in the cournot duopoly. In: Cowan, R., Jonard, N. (eds.) Heterogenous Agents, Interactions and Economic Performance. LNEMS, vol. 521, pp. 3–17. Springer, Heidelberg (2002)
Anthony, P., Jennings, N.: Developing a bidding agent for multiple heterogeneous auctions. ACM Transactions on Internet Technology (ACM TOIT) 3, 185–217 (2003)
Arthur, W.: Inductive reasoning and bounded rationality. American Economic Review 84, 406–411 (1994)
Axelrod, R.: The evolution of cooperation. Basic Books, New York (1984)
Balch, T.: Learning roles: Behavioral diversity in robot teams. Technical Report GIT-CC-97-12, Georgia Institute of Technology (1997)
Balch, T.: Behavioral Diversity in Learning Robot Teams. PhD thesis, College of Computing, Georgia Institute of Technology (1998)
Balch, T.: Reward and diversity in multirobot foraging. In: IJCAI 1999 Workshop on Agents Learning About, From and With other Agents, pp. 92–99 (1999)
Banerjee, B., Peng, J.: The role of reactivity in multiagent learning. In: Third International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 538–545 (2004)
Banerjee, B., Peng, J.: Convergence of no-regret learning in multiagent systems. In: LAMAS (2005)
Barto, A., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discrete-Event Systems journal 13, 41–77 (2003)
Bazzan, A.L.C., Fehler, M., Klugl, F.: Learning to coordinate in a network of social drivers: the role of information. In: LAMAS (2005)
Berenji, H., Vengerov, D.: Advantages of cooperation between reinforcement learning agents in difficult stochastic problems. In: Proceedings of 9th IEEE International Conference on Fuzzy Systems (2000)
Bernhardt, D., Scoones, D.: A note on sequential auctions. The American Economic Review 84(3), 653–657 (1994)
Bernstein, D., Zilberstein, S., Immerman, N.: The complexity of decentralized control of MDPs. In: Proceedings of UAI-2000: The Sixteenth Conference on Uncertainty in Artificial Intelligence, pp. 819–840 (2000)
Binmore, K.: Fun and Games. D.C. Heath and Company, Lexington (1992)
Binmore, K., Vulkan, N.: Applying game theory to automated negotiation. Netnomics 1, 1–9 (1999)
Biso, A., Rossi, F., Sperdutti, A.: Experimental results on learning soft constraints. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Proceedings of KR 2000: Principles of Knowledge Representation and Reasoning, pp. 435–444 (2000)
Bohté, S., Gerding, E., La Poutré, J.: Market-based recommendation: Agents that compete for consumer attention. ACM Transactions on Internet Technology (ACM TOIT) (Special Issue on Machine Learning on the Internet) 4(4), 420–448 (2004)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. SFI Studies in the Sciences of Complexity. Oxford University Press, Oxford (1999)
Boutilier, C., Goldszmidt, M., Sabata, B.: Sequential auctions for the allocation of resources with complementaries. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 527–534 (1999)
Bowling, M.: Convergence and no-regret in multiagent learning. Advances in Neural Information Processing Systems 17, 209–216 (2004)
Bowling, M., Velose, M.: Rational and convergent learning in stochastic games. In: Proceedings of the Seventh International Joint Conference on Artificial Intelligence (IJCAI), pp. 1021–1026 (2001)
Bowling, M., Veloso, M.: An analysis of stochastic game theory for multiagent reinforcement learning. Technical Report CMU-CS-00-165, Computer Science Department, Carnegie Mellon University (2000)
Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artificial Intelligence 136(2), 215–250 (2002)
Brooks, C., Fay, S., Das, R., MacKie-Mason, J., Kephart, J., Durfee, E.: Automated strategy searches in an electronic goods market: Learning complex price schedules. In: Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pp. 31–41. ACM Press, New York (1999)
Brown, G.W.: Iterative solution of games by Fictitious Play. In: Koopmans, T.C. (ed.) Activity Analysis of Production and Allocation, pp. 374–376. Wiley, New York (1951)
Bull, L., Fogarty, T.C.: Evolving cooperative communicating classifier systems. In: Sebald, A.V., Fogel, L.J. (eds.) Proceedings of the Fourth Annual Conference on Evolutionary Programming (EP 1994), pp. 308–315 (1994)
Byde, A.: Applying evolutionary game theory to auction mechanism design. In: ACM Conference on E-Commerce, ACM-EC 2003 (2003)
Chalkiadakis, G., Boutilier, C.: Coordination in multiagent reinforcement learning: A Bayesian approach. In: Proceedings of The Second International Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS 2003), pp. 709–716. ACM, New York (2003)
Chang, Y.-H., Ho, T., Kaelbling, L.: All learning is local: Multi-agent learning in global reward games. In: Proceedings of Neural Information Processing Systems, NIPS 2003 (2003)
Chang, Y.-H., Kaelbling, L.P.: Playing is believing: the role of beliefs in multiagent learning. In: Advances in Neural Information Processing Systems-(NIPS), vol. 14 (2002)
Cheng, S.-F., Leung, E., Lochner, K., O’Malley, K., Reeves, D., Schvartzman, L., Wellman, M.: Walverine: A Walrasian trading agent. Decision Support Systems 39, 169–184 (2005)
Clearwater, S.: Market based Control of Distributed Systems. World Scientific Press, Singapore (1995)
Conitzer, V., Sandholm, T.: AWESOME: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents. In: 20th International Conference on Machine Learning (ICML), pp. 83–90 (2003); An Overview of Cooperative and Competitive Multiagent Learning 33
Dresner, K., Stone, P.: Multiagent traffic management: Opportunities for multiagent learning. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 129–138. Springer, Heidelberg (2006)
Driessens, K., Dzeroski, S.: Integrating guidance into relational reinforcement learning. Machine Learning 57(3), 271–304 (2004)
Durfee, E., Lesser, V., Corkill, D.: Coherent cooperation among communicating problem solvers. IEEE Transactions on Computers C-36(11), 1275–1291 (1987)
Dzeroski, S., Raedt, L.D., Driessens, K.: Relational reinforcement learning. Machine Learning 43, 7–52 (2001)
Sousa, C.O., Sousa, C.O.e., Custodio, L.: Dealing with errors in a cooperative multi-agent learning system. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 139–154. Springer, Heidelberg (2006)
Elmaghraby, W.: The importance of ordering in sequential auctions. Management Science 49(5), 673–682 (2003)
Faratin, P., Sierra, C., Jennings, N.: Negotiation decision functions for autonomous agents. International Journal of Robotics and Autonomous Systems 34(24), 159–182 (1998)
Faratin, P., Sierra, C., Jennings, N.: Using similarity criteria to make issue trade-offs. Artificial Intelligence 142, 205–237 (2002)
Fatima, S., Wooldridge, M., Jennings, N.: Comparing equilibria for game theoretic and evolutionary bargaining models. In: Proceedings of the 5th International Workshop on Agent-Mediated Electronic Commerce (AMEC V), pp. 70–77 (2003)
Ficici, S., Melnik, O., Pollack, J.: Selection in Coevolutionary Algorithms and the Inverse Problem, pp. 277–294. Springer, Heidelberg (2004)
Ficici, S., Pollack, J.: A game-theoretic approach to the simple coevolutionary algorithm. In: Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature (PPSN VI). Springer, Heidelberg (2000)
Foster, D.P., Young, H.P.: On the impossibility of predicting behavior of rational agents. In: PNAS, Proceedings of the National Academy of Sciences of the USA, vol. 98(22) (2001)
Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative weights. Games and Economic Behavior 29, 79–103 (1999)
Frisch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, Inc., London (1974)
Fudenberg, D., Levine, D.: Consistency and cautious fictitious play. Journal of Economic Dynamics and Control 19, 1065–1089 (1995)
Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge (1999)
Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)
Gerding, E., La Poutré, J.: Bargaining with posterior opportunities: An evolutionary social simulation. In: Gallegati, M., Kirman, A.P., Marsili, M. (eds.) The Complex Dynamics of Economic Interactions. LNEMS, vol. 531, pp. 241–256. Springer, Heidelberg (2003)
Gerding, E., Somefun, K., La Poutré, H.: Automated bilateral bargaining about multiple attributes in a one-to-many setting. In: Proceedings of the Sixth International Conference on Electronic Commerce (ICEC 2004), pp. 105–112. ACM Press, New York (2004)
Gerding, E., Somefun, K., La Poutré, H.: Bilateral bargaining in a one-tomany bargaining setting. In: Agent Mediated Electronic Commerce VI (AMECVI). LNCS (LNAI), Springer, Heidelberg (2004) (to appear), invited for publication
Gerding, E., van Bragt, D., La Poutré, J.: Multi-issue negotiation processes by evolutionary simulation: Validation and social extensions. Computational Economics 22, 39–63 (2003)
Ghavamzadeh, M., Mahadevan, S.: Learning to communicate and act using hierarchical reinforcement learning. In: AAMAS-2004 Proceedings of the Third International Joint Conference on Autonomous Agents and Multi Agent Systems, pp. 1114–1121 (2004)
Gintis, C.: Game Theory Evolving. University Press, Princeton (2000)
Greenwald, A., Boyan, J.: Bidding under uncertainty: Theory and experiments. In: Twentieth Conference on Uncertainty in Artificial Intelligence, pp. 209–216 (2004)
Greenwald, A., Hall, K.: Correlated Q-learning. In: Proceedings of the Twentieth International Conference on Machine Learning, ICML, pp. 242–249 (2003)
Greenwald, A., Kephart, J.: Shopbots and pricebots. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 506–511 (1999)
Grefenstette, J., Daley, R.: Methods for competitive and cooperative coevolution. In: Adaptation, Coevolution and Learning in Multiagent Systems: Papers from the 1996 AAAI Spring Symposium, pp. 45–50. AAAI Press, Menlo Park (1996); Technical Report SS-96-01
Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning. In: Proceedings of the 2002 AAAI Symposium Series: Collaborative Learning Agents, pp. 227–234 (2002)
Guo, Y., Muller, J., Weinhardt, C.: Learning user preferences for multiattribute negotiation: An evolutionary approach. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 303–313. Springer, Heidelberg (2003)
Hara, A., Nagao, T.: Emergence of cooperative behavior using ADG; Automatically Defined Groups. In: Proceedings of the 1999 Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 1038–1046 (1999)
Haynes, T., Sen, S.: Evolving behavioral strategies in predators and prey. In: Weiß, G., Sen, S. (eds.) Adaptation and Learning in Multiagent Systems. LNCS (LNAI). Springer, Germany (1995)
Haynes, T.D., Sen, S.: Co-adaptation in a team. International Journal of Computational Intelligence and Organizations (IJCIO) 1(4) (1997)
He, M., Jennings, N.R.: Southampton TAC: An adaptive autonomous trading agent. ACM Transactions on Internet Technology 3, 218–235 (2003)
He, M., Jennings, N.R., Prgel-Bennett, A.: A heuristic bidding strategy for buying multiple goods in multiple english auctions. ACM Transactions on Internet Technology (2006) (to appear)
He, M., Leung, H., Jennings, N.R.: A fuzzy logic based bidding strategy for autonomous agents in continuous double auctions. IEEE Trans. on Knowledge and Data Engineering 15, 1345–1363 (2003)
Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)
Hoffman, R., Shadbolt, N.: Eliciting knowledge from experts: A methodological analysis. Organizational and Human Decision Process 62(2), 129–158 (1995)
Hölldobler, B., Wilson, E.O.: The Ants. Harvard University Press, Cambridge (1990)
Hu, J., Wellman, M.: Multiagent reinforcement learning: theoretical framework and an algorithm. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 242–250. Morgan Kaufmann, San Francisco (1998)
Hu, J., Wellman, M.: Online learning about other agents in a dynamic multiagent system. In: Sycara, K.P., Wooldridge, M. (eds.) Proceedings of the Second International Conference on Autonomous Agents (Agents 1998), pp. 239–246. ACM Press, New York (1998)
Hudson, B., Sandholm, T.: Effectiveness of preference elicitation in combinatorial auctions. In: Padget, J., Shehory, O., Parkes, D.C., Sadeh, N.M., Walsh, W.E. (eds.) AMEC 2002. LNCS (LNAI), vol. 2531, pp. 69–86. Springer, Heidelberg (2002)
Iba, H.: Evolutionary learning of communicating agents. Information Sciences 108, 181–206 (1998)
Iba, H.: Evolving multiple agents by genetic programming. In: Spector, L., Langdon, W., O’Reilly, U.-M., Angeline, P. (eds.) Advances in Genetic Programming 3, pp. 447–466. MIT Press, Cambridge (1999)
Jansen, T., Wiegand, R.P.: Exploring the explorative advantage of the cooperative coevolutionary (1+1) EA. In: Cantu-Paz, E., et al. (eds.) Prooceedings of the Genetic and Evolutionary Computation Conference (GECCO). Springer, Heidelberg (2003)
Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C., Wooldrigde, M.: Automated negotiation: prospects, methods, and challenges. International Journal of Group Decision and Negotiation 10, 199–215 (2001)
Jim, K.-C., Giles, C.L.: Talking helps: Evolving communicating agents for the predator-prey pursuit problem. Artificial Life 6(3), 237–254 (2000)
Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)
Kapetanakis, S., Kudenko, D.: Reinforcement learning of coordination in cooperative multi-agent systems. In: Proceedings of the Nineteenth National Conference on Artificial Intelligence, AAAI 2002 (2002)
Kephart, J., Brooks, C., Das, R.: Pricing information bundles in a dynamic environment. In: Proceedings of the 3rd ACM Conference on Electronic Commerce (ACMEC), pp. 180–190. ACM Press, New York (2001)
Kephart, J., Hanson, J., Greenwald, A.: Dynamic pricing by software agents. Computer Networks 36(6), 731–752 (2000)
Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Negotiating complex contracts. Group Decision and Negotiation 12, 111–125 (2003)
Krishna, V.: Auction Theory. Academic Press, London (2002)
Lichbach, M.I.: The cooperators dilemma. University of Michigan Press, Ann Arbor (1996)
Lin, R.: Bilateral multi-issue contract negotiation for task redistribution using a mediation service. In: Proceedings Agent Mediated Electronic Commerce VI (2004) (to appear)
Littman, M.: Markov games as a framework for multi-agent reinforcement learning. In: Proceedings of the 11th International Conference on Machine Learning (ML 1994), pp. 157–163. Morgan Kaufmann, New Brunswick (1994)
Littman, M.: Friend-or-foe Q-learning in general-sum games. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 322–328. Morgan Kaufmann Publishers Inc., San Francisco (2001)
Littman, M., Stone, P.: Leading best-response strategies in repeated games. In: Seventeenth International Joint Conference on Artificial Intelligence (IJCAI) workshop on Economic Agents, Models, and Mechanisms (2001)
Littman, M.L., Majercik, S.M.: Large-scale planning under uncertainty: A survey. In: Workshop on Planning and Scheduling for Space (1997)
Littman, M.L., Stone, P.: A polynomial-time nash equilibrium algorithm for repeated games. In: Proceedings of the 4th ACM conference on Electronic commerce, 2003, vol. 39, pp. 55–66 (2005); also appeared in Decision Support Systems
Luke, S.: Genetic programming produced competitive soccer softbot teams for RoboCup97. In: Koza, J.R., et al. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 214–222. Morgan Kaufmann, San Francisco (1998)
Luke, S., Spector, L.: Evolving teamwork and coordination with genetic programming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 150–156, 28–31. Stanford University, MIT Press (1996)
Luo, X., Jennings, N.R., Shadbolt, N.: Acquiring tradeoff preferences for automated negotiations: A case study. In: Proceedings of the 5th International Workshop on Agent-Mediated Electronic Commerce (AMEC V), pp. 37–55 (2003)
Luo, X., Jennings, N.R., Shadbolt, N., Leung, H., Lee, J.H.: A fuzzy constraint based model for bilateral multi-issue negotiations in semi-competitive environments. Artificial Intelligence Journal 148(1-2), 53–102 (2003)
MacKie-Mason, J.K., Osepayshvili, A., Reeves, D.M., Wellman, M.P.: Price prediction strategies for market-based scheduling. In: Fourteenth International Conference on Automated Planning and Scheduling, pp. 244–252 (2004)
Mas-Collel, A., Whinston, M., Green, J.: Microeconomic Theory. Oxford University Press, Oxford (1995)
Mataric, M.: Reinforcement learning in the multi-robot domain. Autonomous Robots 4(1), 73–83 (1997)
Mataric, M.: Using communication to reduce locality in distributed multi-agent learning. Joint Special Issue on Learning in Autonomous Robots, Machine Learning, and Autonomous Robots 31(1-3), 141–167, 335-354 (1998)
Maynard-Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)
Maynard Smith, J., Price, J.: The logic of animal conflict. Nature 146, 15–18 (1973)
McDonald, A., Sen, S.: The success and failure of tag-mediated evolution of cooperation. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 155–164. Springer, Heidelberg (2006)
Miconi, T.: When evolving populations is better than coevolving individuals: The blind mice problem. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 647–652 (2003)
Mitchell, M., Crutchfield, J., Das, R.: Evolving cellular automata with genetic algorithms: A review of recent work. In: Proceedings of the First International Conference on Evolutionary Computation and its Applications, EvCA 1996 (1996)
Monekosso, N.D., Remagnino, P.: Phe-Q: A pheromone based Q-learning. In: Australian Joint Conference on Artificial Intelligence, pp. 345–355 (2001)
Myerson, R.B.: Game Theory. Analysis of Conflict. Harvard University Press, Cambridge (1991)
Nachbar, J.: Prediction, optimization, and learning in repeated games. Econometrica 65(2), 275–309 (1997)
Nachbar, J.H., Zame, W.R.: Non-computable strategies and discounted repeated games. Economic Theory 8, 103–122 (1996)
Nair, R., Pynadath, D., Yokoo, M., Tambe, M., Marsella, S.: Taming decentralized POMDPs: Towards efficient policy computation for multiagent settings. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, IJCAI 2003 (2003)
Nash, J.: Non-cooperative games. Annals of Mathematics 54, 286–295 (1951)
Nguyen, T., Jennings, N.: Coordinating multiple concurrent negotiations. In: Proceedings of the Third International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS 2004). ACM Press, New York (2004)
Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the GAMUT: A comprehensive approach to evaluating game-theoretic algorithms. In: Third International Joint Conference on Autonomous Agents and Multiagent Systems (2004)
Osborne, M., Rubinstein, A.: Bargaining and Markets. Academic Press, London (1990)
Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)
Osepayshvili, A., Wellman, M.P., Reeves, D.M., MacKie-Mason, J.K.: Selfconfirming price prediction for bidding in simultaneous ascending auctions. In: Twenty First Conference on Uncertainty in Artificial Intelligence, pp. 441–449 (2005)
Panait, L., Wiegand, R.P., Luke, S.: A visual demonstration of convergence properties of cooperative coevolution. In: Parallel Problem Solving from Nature PPSN-2004, pp. 892–901. Springer, Heidelberg (2004)
Panait, L.A., Wiegand, R.P., Luke, S.: Improving coevolutionary search for optimal multiagent behaviors. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, IJCAI 2003 (2003)
Papadimitriou, C.: Algorithms, games, and the internet. In: Proceedings of the ACM Symposium on Theory of Computing (STOC 2001), pp. 749–753. ACM Press, New York (2001)
Papadimitriou, C., Tsitsiklis, J.: Complexity of markov decision processes. Mathematics of Operations Research 12(3), 441–450 (1987)
Peshkin, L., Kim, K.-E., Meuleau, N., Kaelbling, L.: Learning to cooperate via policy search. In: Sixteenth Conference on Uncertainty in Artificial Intelligence, pp. 307–314. Morgan Kaufmann, San Francisco (2000)
Planqué, R., Britton, N., Franks, N., Peletier, M.A.: The adaptiveness of defense strategies against cuckoo parasitism. Bull. Math. Biol. 64, 1045–1068 (2001)
Potter, M., Meeden, L., Schultz, A.: Heterogeneity in the coevolved behaviors of mobile robots: The emergence of specialists. In: Proceedings of The Seventeenth International Conference on Artificial Intelligence, IJCAI 2001 (2001)
Powers, R., Shoham, Y.: New criteria and a new algorithm for learning in multi-agent systems. In: Neural Information Processing Systems, NIPS (2004)
Powers, R., Shoham, Y.: Learning against opponents with bounded memory. In: International Joint Conference on Artificial Intelligence, IJCAI (2005)
Preist, C., Byde, A., Bartolini, C.: Economic dynamics of agents in multiple autions. In: Proceedings of the fifth International Conference on Autonomous Agents, pp. 545–551 (2001)
Quinn, M.: Evolving communication without dedicated communication channels. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, p. 357. Springer, Heidelberg (2001)
Rapoport, A., Guyer, M., Gordon, D.: The 2x2 Game. University of Michigan Press, Ann Arbor (1976)
Redondo, F.: Game Theory and Economics. Cambridge University Press, Cambridge (2001)
Reeves, D.M., Wellman, M.P., MacKie-Mason, J.K., Osepayshvili, A.: Exploring bidding strategies for market-based scheduling. Decision Support Systems 39, 67–85 (2005)
Rejeb, L., Guessoum, Z., MHallah, R.: An adaptive approach for the exploration-exploitation dilemma and its application to economic systems. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 165–176. Springer, Heidelberg (2006)
Robu, V., La Poutré, J.: Learning the structure of utility graphs used in multiissue negotiation through collaborative filtering. In: Proceedings of the Pacific Rim International Workshop on Multi-Agents (PRIMA 2005). LNCS (LNAI), Springer, Heidelberg (2005) (to appear)
Robu, V., Somefun, K., La Poutré, J.: Modeling complex multi-issue negotiations using utility graphs. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS 2005). ACM Press, New York (2005)
Rosenschein, J., Zlotkin, G.: Rules of Encounter. MIT Press, Cambridge (1994)
Rubinstein, A.: Modeling Bounded Rationality. MIT Press, Cambridge (1998)
Salustowicz, R., Wiering, M., Schmidhuber, J.: Learning team strategies with multiple policy-sharing agents: A soccer case study. Technical report, ISDIA, Corso Elvezia 36, 6900 Lugano, Switzerland (1997)
Samuelson, L.: Evolutionary Games and Equilibrium Selection. MIT Press, Cambridge (1997)
Sandholm, T., Suri, S.: BOB: Improved winner determination in combinatorial auctions and generalizations. Artificial Intelligence 145, 33–58 (2003)
Sandholm, T.W., Crites, R.H.: On multiagent Q-learning in a semicompetitive domain. In: G. Weiss and S. Sen, editors, Adaptation and Learning in Multiagent Systems, pp. 191–205. Springer, Heidelberg (1996)
Scarf, H., Hansen, T.: The Computation of Economic Equilibria. Yale University Press, New Haven (1973)
Sen, S., Sekaran, M.: Multiagent coordination with learning classifier systems. In: Weiss, G., Sen, S. (eds.) IJCAI-WS 1995. LNCS, vol. 1042, pp. 218–233. Springer, Heidelberg (1996)
Sen, S., Sekaran, M.: Individual learning of coordination knowledge. Journal of Experimental and Theoretical Artificial Intelligence 10(3), 333–356 (1998)
Sen, S., Weiss, G.: Learning in Multiagent Systems, ch. 6. MIT Press, Cambridge (1999)
Shoham, Y., Powers, R., Grenager, T.: Multi-agent reinforcement learning: a critical survey. In: AAAI Fall Symposium on Artificial Multi-Agent Learning (2004)
Sierra, C.: Agent-mediated electronic commerce. Autonomous Agents and MultiAgent Systems 9(3), 285–301 (2004)
Simon, H.: Models of Bounded Rationality, vol. 2. MIT Press, Cambridge (1982)
Singh, S.P., Kearns, M.J., Mansour, Y.: Nash convergence of gradient dynamics in general-sum games. In: UAI 2000: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pp. 541–548. Morgan Kaufmann Publishers Inc, San Francisco (2000)
Somefun, K., Gerding, E., Bohté, S., La Poutré, J.: Automated negotiation and bundling of information goods. In: Faratin, P., Parkes, D.C., Rodríguez-Aguilar, J.-A., Walsh, W.E. (eds.) AMEC 2003. LNCS (LNAI), vol. 3048, pp. 1–17. Springer, Heidelberg (2004)
Somefun, K., Gerding, E., Bohté, S., La Poutré, J.: Efficient methods for automated multi-issue negotiation: Negotiating over a two-part tariff. In: International Journal of Intelligent Systems, special issue on Learning Approaches for Negotiation Agents and Automated Negotiation (2006) (to appear)
Somefun, K., Klos, T., La Poutré, H.: Negotiating over bundles and prices using aggregate knowledge. In: Bauknecht, K., Bichler, M., Pröll, B. (eds.) EC-Web 2004. LNCS, vol. 3182, pp. 218–227. Springer, Heidelberg (2004)
Somefun, K., Klos, T., La Poutré, H.: Online learning of aggregate knowledge about nonlinear preferences applied to negotiating prices and bundles. In: Proceedings of the Sixth International Conference on Electronic Commerce (ICEC 2004), pp. 361–370. ACM Press, New York (2005)
Somefun, K., La Poutré, J.: Bundling and pricing for information brokerage: Customer satisfaction as a means to profit optimization. In: Proceedings of the IEEE/WIC International Conference on Web Intellingence (WI 2003), pp. 182–189. IEEE Computer Society press, Los Alamitos (2003)
Stone, P.: Layered Learning in Multi-Agent Systems. PhD thesis, Carnegie Mellon University (1998)
Stone, P., Littman, M.: Implicit negotiation in repeated games. In: Meyer, J.-J., Tambe, M. (eds.) Proceedings of The Eighth International Workshop on Agent Theories, Architectures, and Languages (ATAL 2001), pp. 393–404 (2001)
Stone, P., Schapire, R.E., Littman, M.L., Csisik, J.A., McAllester, D.: Decisiontheoretic bidding based on learned density models in simultaneous, interacting auctions. Journal of Artificial Intelligence Research 19, 209–242 (2003)
Stone, P., Veloso, M.M.: Multiagent systems: A survey from a machine learning perspective. Autonomous Robots 8(3), 345–383 (2000)
Suematsu, N., Hayashi, A.: A multiagent reinforcement learning algorithm using extended optimal response. In: Proceedings of First International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002), pp. 370–377 (2002)
Suryadi, D., Gmytrasiewicz, P.J.: Learning models of other agents using influence diagrams. In: Proceedings of the 1999 International Conference on User Modeling, pp. 223–232 (1999)
Sutton, R., Barto, A.: Reinforcement Learning: An introduction. MIT Press, Cambridge (1998)
’t Hoen, P., La Poutré, J.: A decommitment strategy in a competitive multiagent transportation setting. In: Faratin, P., Parkes, D.C., Rodríguez-Aguilar, J.-A., Walsh, W.E. (eds.) AMEC 2003. LNCS (LNAI), vol. 3048, pp. 56–72. Springer, Heidelberg (2004)
’t Hoen, P., La Poutré, J.: Repeated auctions with complementarities. In: La Poutré, H., Sadeh, N.M., Janson, S. (eds.) AMEC 2005 and TADA 2005. LNCS (LNAI), vol. 3937, pp. 16–29. Springer, Heidelberg (2006)
’t Hoen, P., Tuyls, K.: Analyzing multi-agent reinforcement learning using evolutionary dynamics. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 168–179. Springer, Heidelberg (2004)
tac dev@sics.se. Trading agent competitition (tac): Tac classic and TAC supply chain management (scm) (2006), http://www.sics.se/tac
Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: An overview. In: Tadepalli, P., Givan, R., Driessens, K. (eds.) Proceedings of the ICML 2004 Workshop on Relational Reinforcement Learning, pp. 1–9 (2004)
Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative learning. In: Huhns, M.N., Singh, M.P. (eds.) Readings in Agents, pp. 487–494. Morgan Kaufmann, San Francisco (1993)
Tesauro, G.: Extending Q-learning to general adaptive multi-agent systems. In: In Neural Information Processing Systems, NIPS (2003)
Tesfatsion, L.: Introduction to the special issue on agent-based computational economics. Journal of Economic Dynamics and Control 25, 281–293 (2001)
Tumer, K., Agogino, A.: Efficient reward functions for adaptive multi-rover systems. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 177–191. Springer, Heidelberg (2006)
Tuyls, K., Croonenborghs, T., Ramon, J., Goetschalckx, R., Bruynooghe, M.: Multi-agent relational reinforcement learning. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 192–206. Springer, Heidelberg (2006)
Tuyls, K., Heytens, D., Now, A., Manderick, B.: Extended replicator dynamics as a key to reinforcement learning in multi-agent systems. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 421–431. Springer, Heidelberg (2003)
Tuyls, K., Nowé, A.: Evolutionary game theory and multi-agent reinforcement learning. The Knowledge Engineering Review 20(01), 63–90 (2006)
Tuyls, K., Verbeeck, K., Lenaerts, T.: A selection-mutation model for Qlearning in Multi-Agent Systems. In: The second International Joint Conference on Autonomous Agents and Multi-Agent Systems, Melbourne, Australia. ACM Press, New York (2003)
van Bragt, D., La Poutré, J.: Co-evolving automata negotiate with a variety of opponents. In: Proceedings of the IEEE Congress on Evolutionary Computation 2002 (CEC 2002), vol. 2, pp. 1426–1431. IEEE Press, Los Alamitos (2002)
van Bragt, D., La Poutré, J.: Why agents for automated negotiation should be adaptive. Netnomics 5, 101–118 (2003)
van Otterloo, S.: The value of privacy. In: AAMAS (2005)
Vermeulen, I., Somefun, K., La Poutré, H.: An efficient turnkey agent for repeated trading with overall budget and preferences. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems (CIS 2004), pp. 1072–1077. IEEE Press, Los Alamitos (2004)
Vidal, J., Durfee, E.: The impact of nested agent models in an information economy. In: Proceedings of the 2nd Intern. Conf. on Multiagent Systems, pp. 377–384. AAAI press, Menlo Park (1996)
Vrancx, P., Nowé, A., Steenhaut, K.: Multi-type ACO for light path protection. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 207–215. Springer, Heidelberg (2006)
Wagner, K.: Cooperative strategies and the evolution of communication. Artificial Life 6(2), 149–179 (Spring 2000)
Walsh, W., Das, R., Tesauro, G., Kephart, J.: Analyzing complex strategic interactions in multi-agent games. In: Proceedings of the The Eighteenth National Conference on Artificial Intelligence (AAAI 2002) Workshop on Game Theoretic and Decision Theoretic Agents, pp. 109–118 (2002)
Wang, X., Sandholm, T.: Reinforcement learning to play an optimal Nash equilibrium in team Markov games. Advances in Neural Information Processing Systems, NIPS 2002 (2002)
Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, University of Cambridge (1989)
Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge (1996)
Weinberg, M., Rosenschein, J.S.: Best-response multiagent learning in nonstationary environments. In: The Third International Joint Conference on Autonomous Agents and Multiagent Systems, New York (July 2004)
Weiss, G.: Multi-agent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (1999)
Wellman, M.: A market-oriented programming environment and its application to distributed multicommodity flow problems. Journal of Artificial Intelligence Research 1, 1–23 (1993)
Wellman, M., Greenwald, A., Stone, P., Wurman, P.: The 2001 Trading Agent Competition. Electronic Markets 13, 4–12 (2001)
Wellman, M., Hu, J.: Conjectural equilibrium in multiagent learning. Machine Learning 33(2-3), 179–200 (1998)
Wellman, M.P., Reeves, D.M., Lochner, K.M., Vorobeychik, y.: Price prediction in a trading agent competition. Journal of Artificial Intelligence Research 21, 19–36 (2004)
Wellman, M., Wurman, P., O’Malley, K., Bangera, R., Lin, S.d., Reeves, D., Walsh, W.: Designing the market game for the trading agent competition. IEEE Internet Computing 5, 43–51 (2001)
Wiegand, R.P.: Analysis of Cooperative Coevolutionary Algorithms. PhD thesis, Department of Computer Science, George Mason University (2003)
Wolfe, B., James, M.R., Singh, S.: Learning predictive state representations in dynamical systems without reset. In: Proceedings of the 2005 International Conference on Machine Learning (2005)
Wolpert, D.H., Tumer, K.: Optimal payoff functions for members of collectives. Advances in Complex Systems 4(2/3), 265–279 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hoen, P.J.’., Tuyls, K., Panait, L., Luke, S., La Poutré, J.A. (2006). An Overview of Cooperative and Competitive Multiagent Learning. In: Tuyls, K., Hoen, P.J., Verbeeck, K., Sen, S. (eds) Learning and Adaption in Multi-Agent Systems. LAMAS 2005. Lecture Notes in Computer Science(), vol 3898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11691839_1
Download citation
DOI: https://doi.org/10.1007/11691839_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33053-0
Online ISBN: 978-3-540-33059-2
eBook Packages: Computer ScienceComputer Science (R0)