Abstract
This paper proposes an approach to reducing the cost of fitness evaluation whilst improving the effectiveness in Genetic Programming (GP). In our approach, the whole population is first clustered by a heuristic called fitness-case-equivalence. Then a cluster representative is selected for each cluster. The fitness value of the representative is calculated on all training cases. The fitness is then directly assigned to other members in the same cluster. Subsequently, a clustering tournament selection method replaces the standard tournament selection method. A series of experiments were conducted to solve a symbolic regression problem, a binary classification problem, and a multi-class classification problem. The experiment results show that the new GP system significantly outperforms the standard GP system on these problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Giacobini, M., Tomassini, M., Vanneschi, L.: Limiting the number of fitness cases in genetic programming using statistics. In: PPSN VII: Proceedings of the 7th International Conference on Parallel Problem Solving from Nature, pp. 371–380. Springer, London (2002)
Ziegler, J., Banzhaf, W.: Decreasing the number of evaluations in evolutionary algorithms by using a meta-model of the fitness function. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 264–275. Springer, Heidelberg (2003)
Sastry, K., Goldberg, D.E., Pelikan, M.: Don’t evaluate, inherit. In: Spector, L., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 551–558. Morgan Kaufmann, San Francisco (2001)
Kim, H.S., Cho, S.B.: An efficient genetic algorithms with less fitness evaluation by clustering. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 887–894. IEEE, Los Alamitos (2001)
Jin, Y., Sendhoff, B.: Reducing fitness evaluations using clustering techniques and neural network ensembles. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 688–699. Springer, Heidelberg (2004)
Altenberg, L.: Emergent phenomena in genetic programming. In: Sebald, A.V., Fogel, L.J. (eds.) Proceedings of the Third Annual Conference on Evolutionary Programming, pp. 233–241. World Scientific, Singapore (1994)
Tackett, W.A.: Recombination, selection, and the genetic construction of computer programs. PhD thesis, University of Southern California, Los Angeles, CA, USA (1994)
Jackson, D.: Fitness evaluation avoidance in boolean GP problems. In: Corne, D., et al. (eds.) Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2530–2536. IEEE Press, Edinburgh (2005)
Xie, H.: Diversity control in GP with ADF for regression tasks. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 1253–1257. Springer, Heidelberg (2005)
Frey, P.W., Slate, D.J.: Letter recognition using Holland-style adaptive classifiers. Machine Learning 6, 161–182 (1991)
Jin, Y., Hüsken, M., Olhofer, M., Sendhoff, B.: Neural networks for fitness approximation in evolutionary optimization. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 281–305. Springer, Berlin (2004)
Salami, M., Hendtlass, T.: The fast evaluation strategy for evolvable hardware. Genetic Programming and Evolvable Machines 6, 139–162 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xie, H., Zhang, M., Andreae, P. (2006). Population Clustering in Genetic Programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds) Genetic Programming. EuroGP 2006. Lecture Notes in Computer Science, vol 3905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11729976_17
Download citation
DOI: https://doi.org/10.1007/11729976_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33143-8
Online ISBN: 978-3-540-33144-5
eBook Packages: Computer ScienceComputer Science (R0)