Skip to main content

New Computational Results for the Nurse Scheduling Problem: A Scatter Search Algorithm

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3906))

  • 1360 Accesses

Abstract

In this paper, we present a scatter search algorithm for the well-known nurse scheduling problem (NSP). This problem aims at the construction of roster schedules for nurses taking both hard and soft constraints into account. The objective is to minimize the total preference cost of the nurses and the total penalty cost from violations of the soft constraints. The problem is known to be NP-hard. The contribution of this paper is threefold. First, we are, to the best of our knowledge, the first to present a scatter search algorithm for the NSP. Second, we investigate two different types of solution combination methods in the scatter search framework, based on four different cost elements. Last, we present detailed computational experiments on a benchmark dataset presented recently, and solve these problem instances under different assumptions. We show that our procedure performs consistently well under many different circumstances, and hence, can be considered as robust against case-specific constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thompson, G.M.: Improved implicit optimal modelling of the labour shift scheduling problem. Management Science 43, 595–607 (1995)

    Article  MATH  Google Scholar 

  2. Felici, G., Gentile, C.: A polyhedral Approach for the Staff Rostering Problem. Management Science 50, 381–393 (2004)

    Article  MATH  Google Scholar 

  3. Ernst, A.T., Jiang, H., Krishamoorty, M., Owens, B., Sier, D.: Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research 153, 3–27 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ernst, A.T., Jiang, H., Krishamoorty, M., Owens, B., Sier, D.: An Annotated Bibliography of Personnel Scheduling and Rostering. Annals of Operations Research 127, 21–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Glover, F., McMillan, C.: The General Employee Scheduling Problem: An integration of MS and AI. Computers and Operations Research 13, 563–573 (1986)

    Article  Google Scholar 

  6. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems – a bibliographic survey. European Journal of Operational Research 151, 447–460 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burke, E.K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The state of the art of nurse rostering. Journal of Scheduling 7, 441–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Warner, H.W.: Scheduling Nursing Personnel According to Nursing Preference: A Mathematical Approach. Operations Research 24, 842–856 (1976)

    Article  MATH  Google Scholar 

  9. Maenhout, B., Vanhoucke, M.: An Electromagnetism meta-heuristic for the nurse scheduling problem. Working paper 05/316 Ghent University (2005)

    Google Scholar 

  10. Osogami, T., Imai, H.: Classification of Various Neighborhood Operations for the Nurse Scheduling Problem. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 72–83. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, p. 13. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Vanhoucke, M., Maenhout, B.: Characterisation and Generation of Nurse Scheduling Problem Instances. Working paper 05/339 Ghent University (2005)

    Google Scholar 

  13. Casado, S., Laguna, M., Pacheco, J.: Heuristical Labor Scheduling to Optimize Airport Passenger Flows. Journal of the Operational Research Society 56, 649–658 (2005)

    Article  MATH  Google Scholar 

  14. Glover, F., Laguna, M.: Fundamentals of Scatter Search and Path Relinking. Control and Cybernetics 3, 653–684 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Marti, R., Laguna, M., Glover, F.: Principles of scatter search. European Journal of Operational Research 169, 359–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aickelin, U.: Genetic Algorithms for Multiple-Choice Optimisation Principles. PhD, University of Wales Swansea (1999)

    Google Scholar 

  17. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  18. Martins, E.Q.V., Pascoal, M.M.B.: A new implementation of Yen’s ranking loopless paths algorithm. 4OR – Quarterly Journal of the Belgian, French and Italian Operations Research Societies 1, 121–134 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Kuhn, H.: The Hungarian method for the assignment problem. Naval Research Logistics 2, 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schrage, L.: LINDO: Optimization software for linear programming. LINDO Systems Inc., Chicago (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maenhout, B., Vanhoucke, M. (2006). New Computational Results for the Nurse Scheduling Problem: A Scatter Search Algorithm. In: Gottlieb, J., Raidl, G.R. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2006. Lecture Notes in Computer Science, vol 3906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11730095_14

Download citation

  • DOI: https://doi.org/10.1007/11730095_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33178-0

  • Online ISBN: 978-3-540-33179-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics