Verification using Simulation*

Antoine Girard and George J. Pappas

Department of Electrical and Systems Engineering
University of Pennsylvania
Philadelphia, PA 19104

{agirard,pappasg}@seas.upenn.edu

Abstract. Verification and simulation have always been complemen-
tary, if not competing, approaches to system design. In this paper, we
present a novel method for so-called metric transition systems that bridges
the gap between verification and simulation, enabling system verifica-
tion using a finite number of simulations. The existence of metrics on
the system state and observation spaces, which is natural for continuous
systems, allows us to capitalize on the recently developed framework of
approximate bisimulations, and infer the behavior of neighborhood of
system trajectories around a simulated trajectory. For nondeterministic
linear systems that are robustly safe or robustly unsafe, we provide not
only a completeness result but also an upper bound on the number of
simulations required as a function of the distance between the reach-
able set and the unsafe set. Our framework is the first simulation-based
verification method that enjoys completeness for infinite-state systems.
The complexity is low for robustly safe or robustly unsafe systems, and
increases for nonrobust problems. This provides strong evidence that ro-
bustness dramatically impacts the complexity of system verification and
design.

1 Introduction

Given a system model and a desired specification, system designers rely on both
analysis and simulation methods. Simulation-based approaches ensure that a
finite number of user-defined system trajectories meet the desired specification.
Even though computationally inexpensive simulation is ubiquitous in system
design, it suffers from completeness as it is impossible or impractical to test
all system trajectories. Furthermore, simulation-based testing is semi-automatic
since the user must provide a large number of test cases. On the other hand,
automated verification methods enjoy completeness by showing that all system
trajectories satisfy the desired property. Despite great progress on verification
tools for discrete software and hardware systems, the algorithmic complexity of
verification tools makes them applicable to smaller scale problems.

The gap between simulation and verification is more extreme when consider-
ing systems with infinite states, such as continuous or hybrid systems. Whereas

* This research is partially supported by the Région Rhone-Alpes (Projet CalCel) and
the NSF Presidential Early CAREER (PECASE) Grant 0132716.



traditional simulation techniques for discrete and continuous systems can be
naturally extended for hybrid systems [1-3], verification techniques have been
much more challenging to extend due to the complexity of computing reachable
sets for continuous systems. This has resulted in a variety of computationally in-
tensive approaches for hybrid system verification using predicate abstraction [4,
5], barrier certificates [6], level sets [7], and exact arithmetic [8]. Even though
these approaches can handle low-dimensional hybrid systems, for the class of
uncertain linear systems, promising scalable results have been obtained using
zonotope computations [9].

In this paper, we present a novel method that bridges the gap between verifi-
cation and simulation methods, enabling system verification using a finite num-
ber of simulations. This is achieved for so-called metric transition systems, that
are transition systems that are equipped with metrics on the system state and
observation spaces. Whereas choosing metrics may not be natural for purely
combinatorial discrete problems, they are very natural for continuous and hybrid
systems. Having a notion of distance between states and observations, enables
us to build on the recently developed framework of approximate bisimulation
metrics [10-13]. Bisimulation metrics measure how far two states are from being
bisimilar, thus enabling the quantification of error between trajectories originat-
ing from approximately bisimilar states.

Equipping transition systems with bisimulation metrics enables the develop-
ment of a simulation-based verification algorithm by inferring the behavior of
neighborhood of system trajectories around a simulated trajectory, resulting in
more robust simulations. By appropriately sampling the set of initial states, we
can verify or falsify the desired property for all system trajectories. The more ro-
bust the simulations, the less simulations we have to perform. The pre-computed
bisimulation metric is used for automatically guiding the choice of trajectories
that will be simulated.

For the class of metric transition systems generated by nondeterministic lin-
ear systems that are robustly safe or robustly unsafe, a completeness result is
provided. Our framework is the first simulation-based verification method that
enjoys completeness for continuous systems. Furthermore, we obtain an upper
bound on the number of simulations required as a function of the distance be-
tween the reachable set of the system and the unsafe set. Naturally, the com-
plexity of our approach is low for robustly safe or robustly unsafe systems, and
increases for nonrobust problems. This provides strong evidence that robustness
dramatically impacts the complexity of system verification and design.

2 Bisimulation metrics for transition systems

We consider the class of metric transition systems defined as follows:

Definition 1 (Metric transition system). A transition system with obser-
vations is a tuple T = (Q, —, Qo, II, {{.))) that consists of:

— a (possibly infinite) set Q of states,



— a transition relation —C @Q x Q,

a (possibly infinite) set Qo C Q of initial states,
a (possibly infinite) set II of observations,

— an observation map ({.)) : Q@ — II.

If (Q,dg) and (II,dr) are metric spaces, then T is called a metric transition
system.

A metric transition system is therefore a possibly nondeterministic transition
system equipped with metrics for states and observations. A transition (g, q’) €—
will be denoted ¢ — ¢'. The successor map is defined as the set valued map given
by
Vg€ Q, Post(q) ={¢' € Ql ¢ —d'}.

We assume the set of initial values Qg is a compact subset of @ and for all ¢ € Q,
Post(q) is a compact subset of Q). A state trajectory of T is a finite sequence of
transitions, ¢qo — --- — qx, where gy € Qo. For N € N, Sy (T') denotes the set
of state trajectories of length less or equal to N. The reachable set of T within
N transitions is the subset of IT defined by:

Reachy (T) ={m € II|3qy — --- — qx € SN(T), {{qx)) =7} .

An important problem for transition systems is the safety verification problem
which asks whether the intersection of Reachy (1) with an unsafe set & C IT
is empty or not. When considering metric transition systems, more robust (i.e.
quantitative) versions of this property can be formulated:

Definition 2. A metric transition system T is robustly safe if there exists 6 > 0
such that
v € Reachy (T), N (m,0) NU =0,

and is robustly unsafe if there exists § > 0 such that
Jr € Reachn(T), Np(m,6) CU,

where N (m,8) denotes the d-neighborhood of observation w for the metric dyy.
The supremum of the set of & such that one of these equations holds is called the
coefficient of robustness of T. If T is neither robustly safe nor robustly unsafe,
we say that T is not robust with respect to the safety property.

Remark 1. Robustness with respect to the safety property is generic for metric
transition systems. Indeed, T is not robust with respect to the safety property
if and only if the intersection of the interior of Reachy (T') and U is empty while
the intersection of their closure is not.

For systems with a finite number of states, the safety verification problem can
be solved by exhaustive simulation of the transition system. Though effective for
systems with a reasonable number of states, this approach becomes much more
computationally demanding when the number of states increases. For systems
with a finite but large number of states, notions of systems refinement and equiv-
alence, based on language inclusion, simulation and bisimulation relations [14],
have been useful for simplifying the safety verification problem.



Definition 3 (Bisimulation relation). A relation ~C QX Q is a bisimulation
relation if for all g1 ~ qa:

1. <<111>> = <<112>>7

2. for all 1 — q}, there exists go — q¢b, such that ¢} ~ qb,
3. for all go — ¢, there exists 1 — ¢, such that ¢} ~ qb.

From a bisimulation relation, we can construct an equivalent (but smaller) tran-
sition system T” defined on the quotient set of states @/ ~. Particularly, the
reachable sets of T and T are equal and therefore the safety verification prob-
lem of both systems are equivalent though much simpler to solve for T".

For transition systems with an infinite number of states such as those gen-
erated by dynamical and hybrid systems, exhaustive simulation is generally not
possible. Extensions of the notion of simulation and bisimulation relations have
recently been developed [15-17]. Though simpler, the quotient system generally
still has an infinite number of states for which exhaustive simulation would re-
quire to compute an infinite number of trajectories. In the following, we show
that an approach based on the computation of a finite number of trajectories is
possible using more robust relations defined by metrics.

Definition 4 (Bisimulation metric). A continuous function dp : Q X Q —
R+ is a bisimulation metric if it is a pseudo-metric:

1. fOT allquz dB(Qaq):()y
2. forall qi, 2 € Q, ds(q1,42) = ds(q2, 1),
3. fOT all q1, q2; 43 € Q; dB(leQZi) < dB(qlaQ2) + dB(qQaQ3);

and if in addition, there exists A > 1, such that for all ¢, q2 € Q,

ds(q1,q2) > max( dr({((q1)), ({(g2))), A sup inf ds(q;,q5) ). (1)

q1—q) 279

The notion of bisimulation metrics extends the notion of bisimulation relations.
A bisimulation metric measures how far two states are from being bisimilar:

Proposition 1. The zero set of a bisimulation metric is a bisimulation relation.

Proof. Let q1, g2 € @Q such that ds(¢1,¢2) = 0. Then, from equation (1), we have
that dr(({q1)), ((g2))) = 0. Since dj7 is a metric, this implies that ({(q1)) = ({g2)).
Now, let g1 — ¢, then since dg is continuous and Post(g2) is compact, equation
(1) implies that there exists ga — ¢4 such that dg(q}, ¢5) = 0. Similarly, since
dg(q1,q2) = dp(qa,q1), we have that for all g5 — ¢4, there exists ¢ — ¢} such
that ds(q3,q1) = ds(q1,42) = 0. u

Remark 2. The branching distance defined in [10] and [11] as the smallest func-
tion (but not necessarily metric) d satisfying the functional equation:

d(q1,¢2) = max( drr({(q1)). {(a2))),
A sup inf d(qy,¢5), A sup inf d(qy,q3) )

q—q, 2 ga—aql, 01



is a bisimulation metric. Moreover, we have shown [11] that it is the smallest (or
minimal) bisimulation metric which is the analog for metrics of the largest (or
maximal) bisimulation relation for relations. Though it is possible to compute
the minimal bisimulation metric for systems with a finite number of states [10],
it becomes more problematic for systems with an infinite number of states. In
that case, the relaxed conditions of Definition 4 allows to make computations
easier [12,13].

Given a bisimulation metric dg, we define state neighborhoods associated to this
metric. For all ¢ € Q and § > 0, Ng(q,98) ={¢' € Q| ds(q,¢") < d}.

3 Simulation-based reachability computation

In this section, we show that for metric transition systems equipped with a bisim-
ulation metric, we can compute an approximation (with any desired precision)
of the reachable set of a metric transition system by simulating a finite number
of its state trajectories. Let us assume that we have a discretization function
Disc which associates to a compact set C C @) and a real number ¢ > 0, a finite
set of points Disc(C,e) = {q1,...,¢-} C C such that

for all ¢ € C, there exists ¢;, such that dg(q,q;) < e.

Since dg is assumed to be continuous, such a function always exists!.

The reachable set of T' can then be approximated with arbitrarily precision
using a finite set of simulations, i.e. by computing a finite number of state
trajectories of T'. Let § > 0 be the desired precision of approximation for the
reachable set. Let € be a discretization parameter such that 6 > 6/A + . First,
start with the discretization of the set of initial states of T', Py = Disc(Qy, ).
Then, we compute some state trajectories of T from the following iteration:

Pip1=P;U | | Disc(Post(q),e) |, i=0,...,N - 1.
qEP;
Theorem 1. Let us consider the finite set
Reach%" (T') = {r € IT | 3¢ € Py, ({g)) = 7}.
Then, the following inclusions hold
Reach’" (T') C Reachy (T) € Nz (Reach‘;\’f (T), 6) .

Proof. The first inclusion is obvious since Py is obtained from simulations of
T. Let m € Reachy(T) and g9 — --- — ¢ be a state trajectory of T, such
that ({(gx)) = 7 (k < N). Since gy € Qo, there exists py € Disc(Qo,0) = Po

1 The proof is not stated here because of the lack of space.



such that dg(po,qo) < d. Then, from equation (1), there exists p} € Post(pg)
such that dg(p},q1) < d/A. There also exists p; € Disc(Post(pg),e) C P; such
that dg(p1,p}) < €. From the triangular inequality, dp(p1,q1) < §/A+¢e < 6.
Recursively, we can show that there exists pp € P, C Py such that dg(pg, gr) <
0. Then, from equation (1), we also have dr ({(px)), ({gx))) < ¢ which finally leads
to the second inclusion. |

If we assume that the number of elements Disc(Post(q), €) is always greater than
an integer r > 1, then the set Py contains O(rY) elements. Then, the number of
trajectories that we need to compute grows exponentially with the time horizon
N. To overcome this problem and design a more efficient reachability algorithm,
one can think of using an approach similar to the systematic simulation algorithm
proposed in [2]. The main idea consists in merging, at each iteration, neighbor
states in P;. The algorithm in [2] used general ellipsoidal neighborhoods and
requires several ellipsoidal operations at each step to determine which states need
to be merged. An implementation of this method with neighborhoods associated
to the bisimulation metric seems promising and will be explored in the future.

4 Simulation-based safety verification

The method presented in the previous section can be dramatically improved in
the context of safety verification. First, it is seldom the case that we need a
uniform approximation (in space) of the reachable set. Whereas the previous
approach uniformly covers the reachable set with § neighborhoods, an approach
allowing rough approximations where it is possible (i.e. far from the unsafe set)
and an accurate estimation where it is necessary (i.e. near the unsafe set) would
definitely give more accurate results for equivalent computations. Second, if the
approximation with ¢ neighborhoods does not allow concluding the safety of the
transition system 7', the previous approach does not give any guidance for refin-
ing our approximation other than choose a smaller § and start over. Motivated
by these two remarks, we propose an algorithm for safety verification for the
class of metric transition systems generated by discrete-time linear systems of
the form:

_ Jx(k+1) = Az(k) + Bu(k), z(k) € R", u(k) € U, (0) € I,
o {y(k) = Cz(k), y(k) € RP, (2)

where U is a compact subset of R™ and [ is a compact subset of R™. The input
u(.) is to be thought as a disturbance rather than a control.

Remark 3. The distance between the reachable set of a continuous-time system
and the reachable set of its sampled version can be quantified. The presented
approach can therefore be adapted for safety verification of a continuous-time
system at the expense of a quantifiable error.



4.1 Bisimulation metrics for linear systems

In the spirit of [16], the linear system can be written as a nondeterministic
transition system 7' = (Q, —, Q" I, ({.))) where

the set of states is Q = R",
the transition relation is given by

z — ¢ <= Ju e U such that 2’ = Ax + Bu,

the set of initial states is Qg = I,
the set of observations is IT = RP?,
— the observation map is given by ((z)) = Cz.

The set of states and observations are equipped with the traditional Euclidean
metric. Our approach requires a bisimulation metric for our transition system.
Following [12], we search for bisimulation metrics of the form:

dg(x1,m2) = \/(scl —29)TM (21 — x2) (3)
where M is a positive semi-definite symmetric matrix.

Theorem 2. Let M be a positive semi-definite symmetric matriz, A > 1 such
that the following linear matriz inequalities hold:

M >cCTo, (4)
M — N2ATMA >0, (5)
Then, the function dp(x1,x2) given by equation (3) is a bisimulation metric.

Proof. 1t is clear that dp is pseudo-metric. The linear matrix inequality (4)
implies that

ds(a1,72) > \/ (21 — 22)TCTC(a1 — w2) = ||Cr1 — O

The linear matrix inequality (5) implies that for all u € U,

Adp(Axy + Bu, Axs + Bu) = /\\/(ml —x9)TATM A(x1 — x2)

S \/(1‘1 — xQ)TM(xl — .132) = dg(l‘l,.lfg).
It follows that dg(z1,22) > Asup,, . infy, uy dp(z], 25). |

Thus, a bisimulation metric can be computed by solving a set of linear matrix
inequalities which can be done efficiently using semi-definite programming [18].
Moreover, for the class of asymptotically stable linear systems, bisimulation met-
rics of the form (3) are universal.

Theorem 3. If X' is asymptotically stable (i.e. all the eigenvalues of A lie inside
the open unit disk), then there exists a bisimulation metric of the form (3).

The proof is omitted here but a similar result has been proved in [12].



4.2 Safety verification algorithm

Let T be a metric transition system generated by a stable discrete-time linear
system and dg a bisimulation metric of form (3). We propose a safety verification
algorithm consisting of two main phases. First, by simulating a single trajectory
of T, we compute a rough finite-state abstraction T4 of our transition system.
Then, the algorithm automatically decides which new trajectories need to be
simulated (choice of the initial value and of the sequence of inputs) in order to
refine the abstraction T4 and conclude the safety of T

The states of our abstraction are of the form ¢ = (x, ) with z € R™ and
# > 0 and should be thought of as representing the points of the neighbor-
hood Ngp(z, ). The abstraction of T is a transition system T4 = (Q4,—A4
,QA4,0, 114, ((.)) 4) where the set of states Q 4 is a finite subset of R x R, the
set of observations is IT 4 = II and the observation map is given by ({(x, 1)) 4 =
({x)). We also need a set Qsate € Q4 consisting of safe states of T 4.

Algorithm 1 shows the structure of our safety verification algorithm. In the
following, each step of the method is detailed.

Compute the initial abstraction T4
while Reachn (T4) NU =0 and Q4 # Qsafe do
- Main refinement loop:
Determine the states to split S C Q4 \ Qsafe
foreach ¢ € S do
| Split the state g - refinement operation
end
end
if Reachny(T.4) NU # 0 then
| return ” The system is unsafe’
else
| return ” The system is safe”
end

Algorithm 1: Safety verification algorithm

Computation of the initial abstraction. The initial abstraction is computed
according to the following procedure. Initially, the set of states Q 4, the set of
initial states Q4,0 the set of safe states Qsate as well as the transition relation
— 4 are empty.

First, we choose an initial state zg € I and compute pg such that for all
zo € I, dp(zo,20) < po. We insert (2o, o) in Q4 and Q4,0. Then, we choose
an input v € U and compute e such that for all v € U, dg(Bv,Bu) < e.
For i = 1...N, we compute z; = Az;_1 + Bv and p; = p;—1/X + . Note
that this essentially consists in simulating system T for the initial state zg and
the constant input v. We insert (z;, ;) in Q4 and ((zi—1, ti—1), (2i, ;) in the
transition relation — 4.



The second step consists in inserting safe states in Qgafe- A state (z;, ;)
of the abstraction is safe if Nz ({{z:)), ;) NU = @ (i.e. it is safe now) and
its succesors are safe (i.e. it is safe in the future). We start from the state
(zn, i)y i N ({(zn)), un) NU = 0, then we insert (zn,pun) in Qgsate- We
repeat this procedure for (zy_1, uny—1) and so on until we find (zn/, un/) such
that NH(<<ZN/>>,,U,N/) NnYU # 0.

Refinement operation: state splitting. If the initial abstraction is not suf-
ficient to conclude safety (Q4 = Qsafe) or unsafety (Reachy(T4) NU # () then
the abstraction needs to be refined by splitting states. Let p € (0,1) be a refine-
ment parameter that determines how many states result from state splitting; the
smaller p, the more new states are inserted in the abstraction. For simplicity,
we assume that all the states in Q4 \ Qsafe have at most one predecessor for the
transition relation — 42. We split any state qo = (20, o) € Q4 \ Qsafe according
to the following procedure. State splitting is illustrated on Figure 1.

The first step consists in splitting the state gy into several states. If ¢q
is an initial state (i.e. g9 € Qap), then let uy = puo and {z},...,25} =
Disc(Ng(z0, o) N I, puo). We replace (29, o) by (28, 14), -+, (25, 1) in Qa
and Q40. If go is not an initial state (i.e. go ¢ Qa,0), then let (z_1,1_1) € Q4

be the predecessor of gy (i.e. (z_1,1—1) — .4 (20, o)) and let {wl ... w" } =
Disc(Ng(Bv_1,e_1) N BU, pe_1) where e_1 = g — pi—1 /X and v_; € U is the
input which leads T from z_; to 2. Let vl,...,9", € U be inputs such that

Bv  =w [ (j=1,...,r).Let z} = Az_1+Bv’ | and py = p_1 /A +pe_1, we re-
place (20, tt0) by (28, 116), - - - » (25, 1b) in Q4 and ((2—1, i—1), (20, f10)) is replaced
by (210 11-1), (0 1)) - (1,411, (26, 24) i the transition relation — 4.

We update @4 and — 4, so that each sequence of transitions of the form

(20, 0) = (21,11) =4 =+~ =4 (2K, i) such that (zx, 1) & Qsate is replaced
by r sequences:

(Z.(])’/“'L/O) —A (Z{’lu‘/l) —A A (Zi’/i;c)a j=1...,r

such that 2/ 1= Az 4+ Bu; where v; € BU is the input which leads the system
T from z; to ziy1 and pj | = p; /X +¢€; where €; = pip1 — pi/A. Hence, for each
trajectory initiating from zq (associated to a sequence of inputs vy, . .., vg_1), we
need to simulate the trajectories starting in 2%, ..., 2§ for the same sequence of
inputs. For each safe successors of (z, tix), (2k+1, k+1) € Qsafe, the transition
((2ks ttk), (2k41, pet1)) s replaced by the transitions (2}, u}), (Zk+1, fkt1))s - - - s
((z5, 142.), (241, por+1)) in T4. The main idea is that since we already know that
(zg-+1, tx+1) is safe, there is no need to split this state.

Finally, we update the set of safe states Qsare- For each new state (z,pu) of
Ty, if all its successors are safe and N7 (((2)), u) NU # 0, then we insert (z, )
in Qsate- The same process is repeated for the predecessor of (z, u).

2 This assumption is not restrictive since we are performing finite-horizon verification
and thus such cases can be handled by duplicating states.



Remark 4. The number of new states introduced by the splitting of ¢y depends
critically on how many transitions separate gg from a state in Qgate. For instance
if all the successors of gg are in Qsafe then the refinement operation adds r new
states. On the other hand, if ¢y is an initial state the total number of states of
the abstraction can multiplied by r.

Nut(zB, ) U # 0 e
zi, py) NU =
Nia(Z, 1) nth = 0 e

Fig. 1. Illustration of state splitting, the new states are obtained by simulation of the
system. The grey states are safe states (elements of Qsare): dark grey for states that
were in Qgafe before state splitting and light grey for those that were added during
state splitting.

At each iteration of the main loop of Algorithm 1, we choose a set S C Q 4\ Qsafo
of states to be split according to a refinement policy. Then, we apply state
splitting to each state in S. The order in which we split the elements of S is in
backward manner, that is we split an element ¢ of S if all the states ¢’ € S such
that ¢ — 4 - -+ — .4 ¢’ have already been split.

The refinement procedure defined by state splitting is such that after each
refinement, the states ¢ which remain in Q4 \ Qsafe are those for which there
exists a sequence of transitions ¢ —4 -+ —4 ¢ such that ¢ = (2/,p/) and
N ({({(z")), u) NU is not empty. This means that all states of Q 4\ Qsate are states
which potentially lead to an unsafe state. Since only these states are refined, this
approach is similar to counterexample guided abstraction refinement [19, 4, 5].

Soundness and Completeness. Before stating results on soundness and com-
pleteness of Algorithm 1, we need two approximation results.

Lemma 1. Let T4 be an abstraction of T obtained from the initial abstraction
by a finite sequence of state splittings, let xg — -+ — x € Sn(T). Then, there



exists (zo, o) —a -+ —aA (zk, k) € Sn(Ta) such that one of the following
holds

1. (21, pk) € Qsafe and dp(zy, 2x) < ik,

2. (2k, k) & Qsafes d(T0,20) < po and dg(Bu;, Bv;) < ¢e; (i =0,...,k—1),
where €; = pir1 — i/ N and ug, ..., up_1 (respectively vo,...,vi_1) is the
sequence of inputs associated to the trajectory xo — --- — xy, (respectively
Z0 — " — Zk).

Proof. Let g — -+ — x € Sn(T), let (z0,10) =4 -+ —a4 (2K, x) be the
unique trajectory of length k of the initial abstraction 7T 4. By construction, we
have dp(zo, 20) < po and dp(Bu;, Bv;) <e; (i=0,...,k —1). Then,

dp(Tit1, zi+1) < dp(Az; + Bu,;, Az; + Bv;) + dB(A:Ci + Buv;, Az; + Bv;)
<& +dp(xi,2i) /M

By induction, we have that dg(zy, zx) < pr. Hence, it is clear that the property
holds for the initial abstraction. Let us assume that it holds after a finite sequence
of refinements, and let (zo,p0) —4 -+ —a4 (2k, i) be the associated element
of SNy(T4). We apply state splitting to an element ¢ € Q4 \ Qsate- If (2k, pix)
was in Qgafe before state splitting, then it is clear that the first assertion of
the lemma still holds after state splitting. Let us assume that (z, p) is not in
Qsafe and that the second assertion of the lemma holds before state splitting.
Particularly, it can be shown by induction that dg(xg,z;) < ug. If for all ¢ €
{0,...,k}, ¢ # (zi, ;) then (20, p0) =4 -+ —a (2, px) is still a trajectory
of Ty after state splitting and one of the two assertions of the lemma holds.
If ¢ = (2i,;) (for some i € {1,...,k}, the case i = 0 being similar), then
after state splitting, we know by construction that there exists a trajectory of
T4 of the form (z0,p0) —a - —a (zic1,pi-1) —a (2], p15) - —a (2, 14,)
such that dg(zo, 20) < po and dp(Bug, Bvg) < €g, ..., dg(Bui—2, Bvji_3) < €;_2,
dB(BUi_l, ngfl) < 6271 = PE€i—1, dB(Bui,B’Ui) < Eiyenny dB(Buk_l,ka_l) <
€x—1. Note that this also implies that dg(mk,zi) < .. Therefore, one of the
assertions of the lemma holds after state splitting. Hence, Lemma 1 is proved by
induction. |

Theorem 4. Let T4 be an abstraction of T' obtained from the initial abstraction
by a finite sequence of state splittings. Let us define the following set

Reachy (T) = {r € IT) 3z, 1) € Qu, du(((2)),7) < i}

Then, the following inclusions hold
Reachy (T4) € Reachy (T) C ﬁ;m_c/hN(TA).

Proof. The first inclusion is obvious because the states of the abstraction are
computed by simulation of T'. Let m € Reachy(T') and xg — --- — 3, be a state
trajectory of T, such that ((xx)) = m (kK < N). From Lemma 1, there exists
(zo,p0) =4 -+ — 4 (2r, k) € Sn(Ta) such that one assertion of the lemma
holds. Let us remark that in both cases, we have dg(zx, i) < ux and therefore
dre(((21)), ) < pire- u



The following soundness result is straightforward:

Theorem 5. If Algorithm 1 terminates, then it provides the correct answer to
the safety verification problem.

Proof. TIf at the termination of Algorithm 1, we have Reachy(T4) NU # 0,
then from the first inclusion of Theorem 4, we have that T is unsafe. If at the
termination of Algorithm 1, we have Q 4 = Qgafe, this particularly means that for
all (z, 1) € Qa, Nx({{2)), p)NU = (. From the second inclusion of Theorem 4, we
have that T is safe. ]

Guaranteed termination of Algorithm 1 requires defining more precisely the re-
finement policy. If at each iteration of the main loop of Algorithm 1, we split
all the states of Ty (S = Q4 \ Qsafe), then we have the following completeness
result:

Theorem 6. If we apply the refinement policy S = Q.4 \ Qsqfe, and if the metric
transition system T is either robustly safe or robustly unsafe with coefficient of ro-
bustness 8, then Algorithm 1 terminates after at most [(log(8)—log(fig))/ log(p)]
iterations where fig = max{u| (z, 1) € Qa \ Qsqfe in the initial abstraction}.

Proof. Let fi; = max{p| (z, 1) € Q4\Qsate after the i-th refinement loop}. Since
at each refinement loop, state splitting is applied to all the states in Q 4 \ Qsate,
it is not hard to see that ji;y1 < pji;. Then, ji; < p'fig. It follows that for
i > (log(d) — log(fig))/log(p), m; < §. Let us assume that Algorithm 1 did not
terminate after 4 iterations. Then, there exists (z,u) € Q4 \ Qsafe With pu < 6
and such that ((z)) ¢ U and Nz({(z)), ) NU is not empty. From Theorem 4,
we have that ((z)) € Reachy(T), it follows that T' cannot be robustly safe. If T
was robustly unsafe, there would be a m € Reachy (T) such that Ny (m,d§) C U,
from Theorem 4, there exists 7’ € Reachy(T4) such that dp (7, 7") < ;. Hence,
7' € N (m, ;) € N (m,§) C U which contradicts the fact that Algorithm 1 did

not terminate. | |

We can see that the more robust with respect to the safety property a system is,
the less refinements are needed resulting in fewer computations and easier safety
verification. Note that particularly, if g < 8, no refinement is needed to decide
wether T is safe or unsafe. This is an important advantage of the method.

In practice, it is seldom necessary to apply state splitting to all the states of
the abstraction. Moreover, we have seen that applying state splitting to states
that are separated by a large number of transitions of a state in Qgafe may
result in a large increase of the number of states in @ 4. Hence, from this point
of view it is better to apply state splitting to states that are within a small
number of transitions from elements in Qgage.- A different refinement policy can
be defined by & = P(Q4,p) which consists of the states ¢ = (2, ) € Q. such
that there exists a sequence of transition of the form ¢ — 4 g1 —4 -+ — 4 ¢ with
qx € Qsate and k < p. Note that for this refinement policy, Theorem 6 does not
hold even if Algorithm 1 shows better performances in practice. For theoretical
completeness, we can use a refinement policy which alternates S = P(Q.4,p)
and § = Q4 \ Qsate- In that case, a result similar to Theorem 6 holds.



Remark 5. Tt is clear from Lemma 1 that the abstraction T 4 not only allows to
approximate the reachable set of T but also its language. This is strong evidence
that our approach can be generalized for the simulation-based verification of
more complex properties such as those expressible in linear temporal logic [14].

4.3 Experimental results
Let us consider the following continuous-time linear system:

i‘g(t) = —2x1(t) — 9x2(t) + $3(t) + u(t)
ji3(t) = —4l‘3(t) + 2u(t)

For piecewise constant inputs with sampling period 7 = 0.1, the sampled system
dynamics are given by

x(k+1) = Az(k) + Bu(k), where

1.17 1.47 0.07 0.09 z1 (kT)
A= {—0.15 0.28 0.05} , B= [0.07] , x(k) = {m(m)} ,
0 0 067 0.16 x3(kT)

and v(k) = u(k7). Only the variable x5 is observed (i.e. C = [0 1 0]). The set of
initial states I and of inputs U are given by I = [—0.05,0.05] x [9.95, 10.05] x {0}
and U = [0,2.5]. T denotes the associated metric transition system. The safety
property we want to check is wether the reachable set Reachso(T") intersects
the set {y < 0} or not. In order to apply our safety verification algorithm, we
need to compute a bisimulation metric. This is done by solving linear matrix
inequalities (4) and (5). Our safety verification algorithm has been implemented
in MATLAB and used for several values of the parameter 6 with the refinement
parameter and the refinement policy S = P(Q 4, 5).

Figure 2 represents the over approximation of the set reachable by x; and
o computed by our algorithm for different values of 8. We can see that as the
value of € becomes larger, the system becomes less robustly safe and our over-
approximation of the reachable set needs to be more precise. Let us remark
that the state-splitting is effectively applied where it is needed, that is where
the reachable set is close to the unsafe set. The results of our computations
are presented in Figure 3. Experimentation confirms what we expected from
Theorem 6. Indeed, we can check that if the system is very robust with respect to
the safety property, the safety verification is performed using only one simulation
and takes less than a second. As the system safety becomes less robust, the
algorithm needs more time to decide if the system is safe or unsafe. On Figure
3, this is visible and we can expect that the curves of the CPU time and of the
number of refinement loops have a vertical asymptote for some critical value of

0.
5 Conclusion

In this paper we presented a simulation-based framework for verifying the safety
of metric transition systems. Our algorithm critically relies on recently devel-
oped bisimulation metrics which can be used to approximate arbitrarily close



Fig. 2. Over approximation of the set reachable by x1 and 2, the red line represent
the border of the unsafe set. The quality of the approximation is adapted automatically
to the safety property we want to verify.

0 Result | CPU time (s) | Refinements
-7.4 Safe 0.16 0
-7.0 Safe 0.25 1
-6.5 Safe 0.44 2
-5.8 Safe 74.77 3
-4.6 | Unsafe 5.82 3
-4.5 | Unsafe 0.16 0

Fig. 3. Results of Algorithm 1 (table). Number of refinement loops needed by Algo-
rithm 1 and CPU time in logarithmic scale against the parameter 6 (figure).

the reachable set of metric transition systems by simulating a finite number of
trajectories. For metric transition systems generated by nondeterministic linear
systems, we proposed a safety verification algorithm which is complete for sys-
tems that are robustly safe or robustly unsafe. Future research will focus on
lifting the completeness of the safety verification algorithm to general metric
transition systems, including classes of hybrid systems.

References

1. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular specification of hybrid
systems in charon. In: HSCC ’00: Proceedings of the 3rd International Workshop



10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

on Hybrid Systems. Volume 1790 of Lecture Notes In Computer Science., Springer-
Verlag (2000) 6 — 19

. Kapinski, J., Krogh, B.H., Maler, O., Stursberg, O.: On systematic simulation of

open continuous systems. In: Hybrid Systems: Computation and Control. Volume
2623 of LNCS., Springer (2003) 283-297

Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. In: HSCC ’05:
Proceedings of the 8th International Workshop on Hybrid Systems. Volume 3414
of Lecture Notes In Computer Science., Springer-Verlag (2005) 25 — 53

Alur, R., Dang, T., Ivancic, F.: Counter-example guided predicate abstraction of
hybrid systems. In: Tools and Algorithms for the Construction and Analysis of
Systems. Volume 2619 of LNCS., Springer (2003) 208-223

Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald,
M.: Abstraction and counterexample-guided refinement in model checking of hy-
brid systems. International Journal of Foundations of Computer Science 14(4)
(2003)

Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier cer-
tificates. In: Hybrid Systems: Computation and Control. Volume 2993 of Lecture
Notes in Computer Science., Springer (2004) 477 — 492

Mitchell, I., Tomlin, C.: Level set methods for computation in hybrid systems.
In: Hybrid Systems: Computation and Control. Volume 1790 of LNCS., Springer
(2000)

Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In:
HSCC ’05: Proceedings of the 8th International Workshop on Hybrid Systems.
Volume 3414 of Lecture Notes In Computer Science. (2005) 258-273

Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Hybrid
Systems: Computation and Control. Volume 3414 of Lecture Notes in Computer
Science., Springer (2005) 291-305

de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quanti-
tative transition systems. In: ICALP’04. Volume 3142 of LNCS., Springer (2004)
1150-1162

Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. Technical Report MS-CIS-05-10, Dept. of CIS, University of Pennsylvania
(2005)

Girard, A., Pappas, G.J.: Approximate bisimulations for constrained linear sys-
tems. In: Proc. IEEE Conference on Decision and Control and European Control
Conference, Seville, Spain (2005) 4700-4705

Girard, A., Pappas, G.J.: Approximate bisimulations for nonlinear dynamical sys-
tems. In: Proc. IEEE Conference on Decision and Control and European Control
Conference, Seville, Spain (2005) 684-689

Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical,
control, and hybrid systems. Theoretical Computer Science 342(2-3) (2005) 229—
262

Pappas, G.J.: Bisimilar linear systems. Automatica 39(12) (2003) 2035-2047
van der Schaft, A.: Equivalence of dynamical systems by bisimulation. IEEE
Transactions on Automatic Control 49(12) (2004) 2160-2172

Sturm, J.F.: Using SEDUMI 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Softwares 11-12 (1999) 625-653
Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Computer Aided Verification. Volume 1855 of LNCS.,
Springer (2000) 154-169



