Skip to main content

A Fully Automated Framework for Control of Linear Systems from LTL Specifications

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3927))

Abstract

We consider the following problem: given a linear system and an LTL  − − X formula over a set of linear predicates in its state variables, find a feedback control law with polyhedral bounds and a set of initial states so that all trajectories of the closed loop system satisfy the formula. Our solution to this problem consists of three main steps. First, we partition the state space in accordance with the predicates in the formula and construct a transition system over the partition quotient, which captures our capability of designing controllers. Second, using model checking, we determine runs of the transition system satisfying the formula. Third, we generate the control strategy. Illustrative examples are included.

This work is partially supported by NSF CAREER 0447721 and NSF 0410514.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science: Formal Models and Semantics, vol. B, pp. 995–1072. North-Holland Pub. Co./MIT Press (1990)

    Google Scholar 

  2. Shults, B., Kuipers, B.: Proving properties of continuous systems: Qualitative simulation and temporal logic. Artificial Intelligence 92, 91–130 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brajnik, G., Clancy, D.: Focusing qualitative simulation using temporal logic: theoretical foundations. Annals of Mathematics and Artificial Intelligence 22, 59–86 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Davoren, J., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal logics for general flow systems. In: The 7th International Workshop on Hybrid Systems: Computation and Control, Philadelphia, pp. 280–295 (2004)

    Google Scholar 

  5. Tabuada, P., Pappas, G.: Model checking ltl over controllable linear systems is decidable. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, Springer, Heidelberg (2003)

    Google Scholar 

  6. Antoniotti, M., Mishra, B.: Discrete event models + temporal logic = supervisory controller: Automatic synthesis of locomotion controllers. In: IEEE International Conference on Robotics and Automation (1995)

    Google Scholar 

  7. Loizou, S.G., Kyriakopoulos, K.J.: Automatic synthesis of multiagent motion tasks based on ltl specifications. In: 43rd IEEE Conference on Decision and Control (2004)

    Google Scholar 

  8. Quottrup, M.M., Bak, T., Izadi-Zamanabadi, R.: Multi-robot motion planning: A timed automata approach. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, pp. 4417–4422 (2004)

    Google Scholar 

  9. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Hybrid controllers for path planning: a temporal logic approach. In: Proceedings of the 2005 IEEE Conference on Decision and Control, Seville, Spain (2005)

    Google Scholar 

  10. Antoniotti, M., Park, F., Policriti, A., Ugel, N., Mishra, B.: Foundations of a query and simulation system for the modeling of biochemical and biological processes. In: Proceedings of the Pacific Symposium on Biocomputing, Lihue, Hawaii, pp. 116–127 (2003)

    Google Scholar 

  11. Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schneider, D.: Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in e.coli. In: Thirteen International Conference on Intelligent Systems for Molecular Biology (2005)

    Google Scholar 

  12. Habets, L., van Schuppen, J.: A control problem for affine dynamical systems on a full-dimensional polytope. Automatica 40, 21–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gastin, P., Oddoux, D.: Fast ltl to büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Kloetzer, M., Belta, C.: Ltlcon, a matlab package for control of linear systems from linear temporal logic specifications (2005), http://iasi.bu.edu/~software/LTL-control.htm

  15. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P., Nicollin, X.: Hybrid automata: An algorithmic approach to specification and verification of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular inclusions. Computer Aided Verification, 95–104 (1994)

    Google Scholar 

  18. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Mathematics of Control, Signals and Systems 13, 1–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proceedings of the IEEE 88, 971–984 (2000)

    Article  Google Scholar 

  20. Pappas, G.J.: Bisimilar linear systems. Automatica 39, 2035–2047 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Broucke, M.: A geometric approach to bisimulation and verification of hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 61–75. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Haghverdi, E., Tabuada, P., Pappas, G.: Bisimulation relations for dynamical and control systems. Electronic Notes in Theoretical Computer Science, vol. 69. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  23. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Fifth International Workshop on Hybrid Systems: Computation and Control, Stanford (2002)

    Google Scholar 

  24. Belta, C., Isler, V., Pappas, G.J.: Discrete abstractions for robot planning and control in polygonal environments. IEEE Transactions on Robotics 21, 864–874 (2005)

    Article  Google Scholar 

  25. Motzkin, T., Raiffa, H., Thompson, G., Thrall, R.M.: The double description method. In: Kuhn, H., Tucker, A. (eds.) Contributions to theory of games, vol. 2, Princeton University Press, Princeton (1953)

    Google Scholar 

  26. Fukuda, K.: cdd/cdd+ package, http://www.cs.mcgill.ca/~fukuda/soft/cdd/_home/cdd.html

  27. Lee, C.W.: Subdivisions and triangulations of polytopes. In: ORourke, J. (ed.) Handbook of discrete and computational geometry, pp. 271–290. CRC Press, Boca Raton (1997)

    Google Scholar 

  28. Kloetzer, M., Belta, C.: A fully automated framework for controller synthesis from linear temporal logic specifications. Technical Report CISE 2005-IR-0050, Boston University (2005), http://www.bu.edu/systems/research/publications/2005/2005-IR-0050.pdf

  29. Belta, C., Habets, L.: Constructing decidable hybrid systems with velocity bounds. In: 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas (2004)

    Google Scholar 

  30. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-Wesley, Reading, Massachusetts (2004)

    Google Scholar 

  31. Torrisi, F., Baotic, M.: Matlab interface for the cdd solver, http://control.ee.ethz.ch/~hybrid/cdd.php

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kloetzer, M., Belta, C. (2006). A Fully Automated Framework for Control of Linear Systems from LTL Specifications. In: Hespanha, J.P., Tiwari, A. (eds) Hybrid Systems: Computation and Control. HSCC 2006. Lecture Notes in Computer Science, vol 3927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11730637_26

Download citation

  • DOI: https://doi.org/10.1007/11730637_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33170-4

  • Online ISBN: 978-3-540-33171-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics