Abstract
We consider the following problem: given a linear system and an LTL − − X formula over a set of linear predicates in its state variables, find a feedback control law with polyhedral bounds and a set of initial states so that all trajectories of the closed loop system satisfy the formula. Our solution to this problem consists of three main steps. First, we partition the state space in accordance with the predicates in the formula and construct a transition system over the partition quotient, which captures our capability of designing controllers. Second, using model checking, we determine runs of the transition system satisfying the formula. Third, we generate the control strategy. Illustrative examples are included.
This work is partially supported by NSF CAREER 0447721 and NSF 0410514.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science: Formal Models and Semantics, vol. B, pp. 995–1072. North-Holland Pub. Co./MIT Press (1990)
Shults, B., Kuipers, B.: Proving properties of continuous systems: Qualitative simulation and temporal logic. Artificial Intelligence 92, 91–130 (1997)
Brajnik, G., Clancy, D.: Focusing qualitative simulation using temporal logic: theoretical foundations. Annals of Mathematics and Artificial Intelligence 22, 59–86 (1998)
Davoren, J., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal logics for general flow systems. In: The 7th International Workshop on Hybrid Systems: Computation and Control, Philadelphia, pp. 280–295 (2004)
Tabuada, P., Pappas, G.: Model checking ltl over controllable linear systems is decidable. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, Springer, Heidelberg (2003)
Antoniotti, M., Mishra, B.: Discrete event models + temporal logic = supervisory controller: Automatic synthesis of locomotion controllers. In: IEEE International Conference on Robotics and Automation (1995)
Loizou, S.G., Kyriakopoulos, K.J.: Automatic synthesis of multiagent motion tasks based on ltl specifications. In: 43rd IEEE Conference on Decision and Control (2004)
Quottrup, M.M., Bak, T., Izadi-Zamanabadi, R.: Multi-robot motion planning: A timed automata approach. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, pp. 4417–4422 (2004)
Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Hybrid controllers for path planning: a temporal logic approach. In: Proceedings of the 2005 IEEE Conference on Decision and Control, Seville, Spain (2005)
Antoniotti, M., Park, F., Policriti, A., Ugel, N., Mishra, B.: Foundations of a query and simulation system for the modeling of biochemical and biological processes. In: Proceedings of the Pacific Symposium on Biocomputing, Lihue, Hawaii, pp. 116–127 (2003)
Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schneider, D.: Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in e.coli. In: Thirteen International Conference on Intelligent Systems for Molecular Biology (2005)
Habets, L., van Schuppen, J.: A control problem for affine dynamical systems on a full-dimensional polytope. Automatica 40, 21–35 (2004)
Gastin, P., Oddoux, D.: Fast ltl to büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)
Kloetzer, M., Belta, C.: Ltlcon, a matlab package for control of linear systems from linear temporal logic specifications (2005), http://iasi.bu.edu/~software/LTL-control.htm
Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P., Nicollin, X.: Hybrid automata: An algorithmic approach to specification and verification of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)
Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular inclusions. Computer Aided Verification, 95–104 (1994)
Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Mathematics of Control, Signals and Systems 13, 1–21 (2000)
Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proceedings of the IEEE 88, 971–984 (2000)
Pappas, G.J.: Bisimilar linear systems. Automatica 39, 2035–2047 (2003)
Broucke, M.: A geometric approach to bisimulation and verification of hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 61–75. Springer, Heidelberg (1999)
Haghverdi, E., Tabuada, P., Pappas, G.: Bisimulation relations for dynamical and control systems. Electronic Notes in Theoretical Computer Science, vol. 69. Elsevier, Amsterdam (2003)
Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Fifth International Workshop on Hybrid Systems: Computation and Control, Stanford (2002)
Belta, C., Isler, V., Pappas, G.J.: Discrete abstractions for robot planning and control in polygonal environments. IEEE Transactions on Robotics 21, 864–874 (2005)
Motzkin, T., Raiffa, H., Thompson, G., Thrall, R.M.: The double description method. In: Kuhn, H., Tucker, A. (eds.) Contributions to theory of games, vol. 2, Princeton University Press, Princeton (1953)
Fukuda, K.: cdd/cdd+ package, http://www.cs.mcgill.ca/~fukuda/soft/cdd/_home/cdd.html
Lee, C.W.: Subdivisions and triangulations of polytopes. In: ORourke, J. (ed.) Handbook of discrete and computational geometry, pp. 271–290. CRC Press, Boca Raton (1997)
Kloetzer, M., Belta, C.: A fully automated framework for controller synthesis from linear temporal logic specifications. Technical Report CISE 2005-IR-0050, Boston University (2005), http://www.bu.edu/systems/research/publications/2005/2005-IR-0050.pdf
Belta, C., Habets, L.: Constructing decidable hybrid systems with velocity bounds. In: 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas (2004)
Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-Wesley, Reading, Massachusetts (2004)
Torrisi, F., Baotic, M.: Matlab interface for the cdd solver, http://control.ee.ethz.ch/~hybrid/cdd.php
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kloetzer, M., Belta, C. (2006). A Fully Automated Framework for Control of Linear Systems from LTL Specifications. In: Hespanha, J.P., Tiwari, A. (eds) Hybrid Systems: Computation and Control. HSCC 2006. Lecture Notes in Computer Science, vol 3927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11730637_26
Download citation
DOI: https://doi.org/10.1007/11730637_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33170-4
Online ISBN: 978-3-540-33171-1
eBook Packages: Computer ScienceComputer Science (R0)