Abstract
We investigate techniques for automatically generating symbolic approximations to the time solution of a system of differential equations. This is an important primitive operation for the safety analysis of continuous and hybrid systems. In this paper we design a time elapse operator that computes a symbolic over-approximation of time solutions to a continuous system starting from a given initial region. Our approach is iterative over the cone of functions (drawn from a suitable universe) that are non negative over the initial region. At each stage, we iteratively remove functions from the cone whose Lie derivatives do not lie inside the current iterate. If the iteration converges, the set of states defined by the final iterate is shown to contain all the time successors of the initial region. The convergence of the iteration can be forced using abstract interpretation operations such as widening and narrowing.
We instantiate our technique to linear hybrid systems with piecewise-affine dynamics to compute polyhedral approximations to the time successors. Using our prototype implementation TimePass, we demonstrate the performance of our technique on benchmark examples.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)
Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for convex polyhedra. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 337–354. Springer, Heidelberg (2003)
Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhedra and the Parma Polyhedra Library. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002)
Besson, F., Jensen, T., Talpin, J.-P.: Polyhedral analysis of synchronous languages. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 51–69. Springer, Heidelberg (1999)
Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: ACM Principles of Programming Languages, pp. 238–252 (1977)
Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing approaches to Abstract interpretation, invited paper. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)
Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)
Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004)
Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)
Halbwachs, N., Proy, Y., Roumanoff, P.: Verification of real-time systems using linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)
Henzinger, T., Ho, P.-H.: Algorithmic analysis of nonlinear hybrid systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 225–238. Springer, Heidelberg (1995)
Lafferriere, G., Pappas, G., Yovine, S.: Symbolic reachability computation for families of linear vector fields. J. Symbolic Computation 32, 231–253 (2001)
Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic algebraic model checking I: Challenges from systems biology. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidelberg (2005)
Prajna, S., Jadbabaie, A.: Safety verification using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)
Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 573–589. Springer, Heidelberg (2005)
Rodriguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 590–605. Springer, Heidelberg (2005)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–555. Springer, Heidelberg (2004)
Silva, B., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification of hybrid dynamical system using checkmate. In: ADPM 2000 (2000), available online from: http://www.ece.cmu.edu/~webk/checkmate
Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003)
Tiwari, A., Khanna, G.: Non-linear systems: Approximating reach sets. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sankaranarayanan, S., Sipma, H.B., Manna, Z. (2006). Fixed Point Iteration for Computing the Time Elapse Operator. In: Hespanha, J.P., Tiwari, A. (eds) Hybrid Systems: Computation and Control. HSCC 2006. Lecture Notes in Computer Science, vol 3927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11730637_40
Download citation
DOI: https://doi.org/10.1007/11730637_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33170-4
Online ISBN: 978-3-540-33171-1
eBook Packages: Computer ScienceComputer Science (R0)