Skip to main content

Bounded Model Checking for GSMP Models of Stochastic Real-Time Systems

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3927))

Included in the following conference series:

  • 1939 Accesses

Abstract

Model checking is a popular algorithmic verification technique for checking temporal requirements of mathematical models of systems. In this paper, we consider the problem of verifying bounded reachability properties of stochastic real-time systems modeled as generalized semi-Markov processes (GSMP). While GSMPs is a rich model for stochastic systems widely used in performance evaluation, existing model checking algorithms are applicable only to subclasses such as discrete-time or continuous-time Markov chains. The main contribution of the paper is an algorithm to compute the probability that a given GSMP satisfies a property of the form “can the system reach a target before time T within k discrete events, while staying within a set of safe states”. For this, we show that the probability density function for the remaining firing times of different events in a GSMP after k discrete events can be effectively partitioned into finitely many regions and represented by exponentials and polynomials. We report on illustrative examples and their analysis using our techniques.

This research was supported by the US National Science Foundation via grants CCR-0410662 and ITR/SY 0121431.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for probabilistic real-time systems. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 115–136. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continuous-time markov chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biere, A., Cimatti, A., Clarke, E., Fujita, M., Zhu, Y.: Symbolic model checking using SAT procedures instead of BDDs. In: Proceedings of the 36th ACM/IEEE Design Automation Conference, pp. 317–320 (1999)

    Google Scholar 

  5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (2000)

    Google Scholar 

  6. Clarke, E.M., Kurshan, R.P.: Computer-aided verification. IEEE Spectrum 33(6), 61–67 (1996)

    Article  Google Scholar 

  7. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. German, R.: Performance analysis of communication systems: Modeling with non-Markovian stochastic Petri nets. J. Wiley & Sons, Chichester (2000)

    MATH  Google Scholar 

  9. Glynn, P.W.: A GSMP formalism for discrete event systems. Proceedings of the IEEE 77(1), 14–23 (1988)

    Article  Google Scholar 

  10. Hansson, H., Jonsson, B.: A framework for reasoning about time and reliability. In: Proceedings of the Tenth IEEE Real-Time Systems Symposium, pp. 102–111 (1989)

    Google Scholar 

  11. Haverkort, B.: Performance of computer-communication systems: A model-based approach. Wiley & Sons, Chichester (1998)

    Book  Google Scholar 

  12. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engineering 23(5), 279–295 (1997)

    Article  Google Scholar 

  13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

    Google Scholar 

  14. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Kwiatkowska, M.Z.: Model checking for probability and time: from theory to pratice. In: Proceedings of the 18th IEEE Symposium on Logic in Computer Science, pp. 351–360 (2003)

    Google Scholar 

  16. Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: a hybrid approach. Software Tools for Technology Transfer 6(2), 128–142 (2004)

    Article  MATH  Google Scholar 

  17. D’Argenio, P., Hermanns, H., Katoen, J.-P., Klaren, R.: Modest - a modeling and description language for stochastic timed systems. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 87–104. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Shedler, G.S.: Regenerative stochastic simulation. Academic Press, London (1993)

    MATH  Google Scholar 

  19. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, pp. 327–338 (1985)

    Google Scholar 

  20. Younes, H., Simmons, R.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alur, R., Bernadsky, M. (2006). Bounded Model Checking for GSMP Models of Stochastic Real-Time Systems. In: Hespanha, J.P., Tiwari, A. (eds) Hybrid Systems: Computation and Control. HSCC 2006. Lecture Notes in Computer Science, vol 3927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11730637_5

Download citation

  • DOI: https://doi.org/10.1007/11730637_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33170-4

  • Online ISBN: 978-3-540-33171-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics