Abstract
In this paper, we propose a novel scoring method for tumor prediction using an evolutionary fuzzy classifier which can provide accurate and interpretable information. The merits of the proposed method are threefold. 1) The score ranged in [0, 100] can further illustrate the degree of tumor status in contrast to the conventional tumor classifier. 2) The derived score system can be used as a tumor classifier using a system-suggested or human-specified threshold value. 3) The derived classifier with a compact fuzzy rule base can generate an interpretable and accurate prediction result. The effectiveness of the proposed method is evaluated and compared using two well-known datasets from microarray data and an existing tumor classifier. It is shown by computer simulation that the proposed scoring method is effective using ROC curves of classification.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ressom, H., Reynolds, R., Varghese, R.S.: Increasing the efficiency of fuzzy logic-based gene expression data analysis. Physiol Genomics 13, 107–117 (2003)
Woolf, P.J., Wang, Y.A.: Fuzzy logic approach to analyzing gene expression data. Physiol Genomics 3, 9–15 (2000)
Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random boolean network models and the yeast transcriptional network. PNAS 100(25), 14796–14799 (2003)
Creighton, C., Hanash, S.: Mining gene expression databases for association rules. Bioinformatics 19(1), 79–86 (2003)
Soinov, L.A., Krestyaninova, M.A., Brazma, A.: Towards reconstruction of gene networks from expression data by supervised learning. Genome Biology 4(R6) (2003)
Li, J., Liu, H., Downing, J.R., Yeoh, A.E.-J., Wong, L.: Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (all) patients. Bioinformatics 19(1), 71–78 (2003)
Hvidsten, T.R., Lgreid, A., Komorowski, J.: Learning rulebased models of biological process from gene expression time profiles using gene ontology. Bioinformatics 19(9), 1116–1123 (2003)
Vinterbo, S.A., Kim, E.-Y., Ohno-Machado, L.: Small, fuzzy and interpretable gene expression based classifiers. Bioinformatics 21, 1964–1970 (2005)
Friberg, M., Rohr, P., Gonnet, G.: Scoring functions for transcription factor binding site prediction. BMC Bioinformactics 6(84) (2005)
Liu, X.S., Brutlag, D.L., Liu, J.S.: An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat Biotechnol 20, 835–839 (2002)
Murvai, J., Vlahovicek, K., Pongor, S.: A simple probabilistic scoring method for protein domain identification. Bioinformatics 16(12), 1155–1156 (2000)
Jensen, S.T., Liu, J.S.: BioOptimizer: a Bayesian scoring function approach to motif discovery. Bioinformatics 20(10), 1557–1564 (2004)
Ho, S.-Y., Chen, H.-M., Ho, S.-J., Chen, T.-K.: Design of Accurate Classifiers with a Compact Fuzzy-Rule Base Using an Evolutionary Scatter Partition of Feature Space. IEEE Trans. Systems, Man, and Cybernetics-Part B 34(2), 1031–1044 (2004)
Ho, S.-Y., Shu, L.-S., Chen, J.-H.: Intelligent Evolutionary Algorithms for Large Parameter Optimization Problems. IEEE Trans. Evolutionary Computation 8(6), 522–541 (2004)
Statnikov, A., Aliferis, C.F., Tsamardinos, I., Hardin, D., Levy, S.: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21, 631–643 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ho, SY., Hsieh, CH., Chen, KW., Huang, HL., Chen, HM., Ho, SJ. (2006). Scoring Method for Tumor Prediction from Microarray Data Using an Evolutionary Fuzzy Classifier. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_61
Download citation
DOI: https://doi.org/10.1007/11731139_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33206-0
Online ISBN: 978-3-540-33207-7
eBook Packages: Computer ScienceComputer Science (R0)