Abstract
Kernel Methods are algorithms that implicitly perform, by replacing the inner product with an appropriate Mercer Kernel, a nonlinear mapping of the input data to a high dimensional Feature Space. In this paper, we describe a Kernel Method for clustering. The algorithm compares better with popular clustering algorithms, namely K-Means, Neural Gas, Self Organizing Maps, on a synthetic dataset and three UCI real data benchmarks, IRIS data, Wisconsin breast cancer database, Spam database.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support Vector Clustering. Journal of Machine Learning Research 2, 125–137 (2001)
Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic analysis on semigroups. Springer, New York (1984)
Bishop, C.: Neural Networks for Pattern Recognition. Cambridge University Press, Cambridge (1995)
Camastra, F., Verri, A.: A novel Kernel Method for Clustering. IEEE Transaction on Pattern Analysis and Machine Intelligence 27(5), 801–805 (2005)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM algorithm. Journal Royal Statistical Society 39(1), 1–38 (1977)
Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7, 179–188 (1936)
Girolami, M.: Mercer kernel based clustering in feature space. IEEE Transactions on Neural Networks 13(3), 780–784 (2002)
Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic Press, Dordrecht (1992)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A review. ACM Comput. Surveys 31(3), 264–323 (1999)
Kohonen, T.: Self-Organized formation of topologically correct feature maps. Biological Cybernetics 43(1), 59–69 (1982)
Kohonen, T.: Self-Organizing Map. Springer, New York (1997)
Lloyd, S.P.: An algorithm for vector quantizer design. IEEE Transaction on Communications 28(1), 84–95 (1982)
Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. SIAM News 23(5), 1–18 (1990)
Martinetz, T.E., Schulten, K.J.: A neural gas network learns topologies. Artificial Neural Networks, 397–402 (1991)
Martinetz, T.E., Schulten, K.J.: Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transaction on Neural Networks 4(4), 558–569 (1993)
Meila, M.: Comparing Clusterings, UW Technical Report 418 (2003)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On Spectral Clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems 14, 849–856 (2001)
Schölkopf, B., Smola, A.J., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem, Technical Report No. 44, Max Planck Institut für biologische Kybernetik, Tübingen (1996)
Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. Advances in Neural Information Processing Systems 12, 526–532 (1999)
Tax, D.M.J., Duin, R.P.W.: Support Vector domain description. Pattern Recognition Letters 20(11-13), 1191–1199 (1999)
Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
Wolberg, W.H., Mangasarian, O.L.: Multisurface method of pattern separation for medical diagnosis applied to breast citology. In: Proceedings of the National Academy of Sciences, USA, vol. 87, pp. 9193–9196 (1990)
Wu, C.F.J.: On the convergence properties of the em algorithm. The Annals of Statistics 11(1), 95–103 (1983)
Yu, K., Ji, L., Zhang, X.: Kernel Nearest-Neighbor Algorithm. Neural Processing Letters 15(2), 147–156 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Camastra, F. (2006). Kernel Methods for Clustering. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_1
Download citation
DOI: https://doi.org/10.1007/11731177_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33183-4
Online ISBN: 978-3-540-33184-1
eBook Packages: Computer ScienceComputer Science (R0)