Skip to main content

A New Neural Network Model for Contextual Processing of Graphs

  • Conference paper
Neural Nets (WIRN 2005, NAIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3931))

  • 888 Accesses

Abstract

We propose a novel simple approach to deal with fairly general graph structures by neural networks. Using a constructive approach, the model Neural Network for Graphs (NN4G) exploits the contextual information stored in the hidden units progressively added to the network, without introducing cycles in the definition of the state variables. In contrast to previous neural networks for structures, NN4G is not recursive but uses standard neurons (with no feedbacks) that traverse each graph without hierarchical assumptions on its topology, allowing the extension of structured domain to cyclic directed/undirected graphs. Initial experimental results, obtained on the prediction of the boiling point of alkanes and on the classification of artificial cyclic structures, show the effectiveness of this new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bianchini, M., Gori, M., Scarselli, F.: Recursive processing of cyclic graphs. In: Proc. of WCCI-IJCNN 2002, vol. 1, pp. 154–159 (2002)

    Google Scholar 

  2. Bianucci, A.M., Micheli, A., Sperduti, A., Starita, A.: Application of cascade correlation networks for structures to chemistry. Appl. Intell. 12, 117–146 (2000)

    Article  Google Scholar 

  3. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. Technical Report CMU-CS-90-100, Carnegie Mellon (August 1990)

    Google Scholar 

  4. Frasconi, P., Gori, M., Küchler, A., Sperduti, A.: From sequences to data structures: Theory and applications. In: Kolen, J.F., Kremer, S.C. (eds.) A Field Guide to Dynamical Recurrent Networks, ch. 19, IEEE Press, Inc., Los Alamitos (2001)

    Google Scholar 

  5. Hammer, B., Steil, J.J.: Tutorial: Perspectives on learning with rnns. In: Proc. of ESANN 2002, pp. 357–368. D-side (2002)

    Google Scholar 

  6. Micheli, A., Portera, F., Sperduti, A.: A preliminary empirical comparison of recursive neural networks and tree kernel methods on regression tasks for tree structured domains. Neurocomputing 64, 73–92 (2005)

    Article  Google Scholar 

  7. Micheli, A., Sona, D., Sperduti, A.: Contextual processing of structured data by recursive cascade correlation. IEEE Trans. Neural Networks 15(6), 1396–1410 (2004)

    Article  Google Scholar 

  8. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: the Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  9. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE Trans. Neural Networks 8(3), 714–735 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Micheli, A., Sestito, A.S. (2006). A New Neural Network Model for Contextual Processing of Graphs. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_2

Download citation

  • DOI: https://doi.org/10.1007/11731177_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33183-4

  • Online ISBN: 978-3-540-33184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics