Abstract
We augment a linear regression procedure by a thruth-functional method in order to identify a highly informative regression line. The idea is to use statistical methods to identify a confidence region for the line and exploit the structure of the sample data falling in this region for identifying the most fitting line. The fitness function is related to the fuzziness of the sampled points as a natural extension of the statistical criterion ruling the identification of the confidence region within the Algorithmic Inference approach. We tested the method on three well known benchmarks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pedrycz, W.: Granular computing in data mining. In: Last, M., Kandel, A. (eds.) Data Mining & Computational Intelligence. Springer, Heidelberg (2001)
Morrison, D.F.: Multivariate statistical methods, 2nd edn. McGraw-Hill, New York (1989)
Poggio, T., Girosi, F.: Networks for approximation and learning. In: Lau, C. (ed.) Foundations of Neural Networks, pp. 91–106. IEEE Press, Piscataway (1992)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)
Apolloni, B., Malchiodi, D., Gaito, S.: Algorithmic Inference in Machine Learning. In: Advanced Knowledge International, Magill, Adelaide. International series on advanced intelligence, vol. 5 (2003)
Cox, E.: The fuzzy systems handbook. AP Professional, San Diego (1998)
Apolloni, B., Bassis, S., Gaito, S., Iannizzi, D., Malchiodi, D.: Learning continuous functions through a new linear regression method. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds.) Biological and Artificial Intelligence Environments, pp. 235–243. Springer, Heidelberg (2005)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algoritms. Plenum Press, New York (1981)
Aarts, E., Korst, J.: Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing. John Wiley, Chichester (1989)
National Institute of Standards and Technology: Strd dataset Norris (online accessed April 2005), http://www.itl.nist.gov/div898/strd/lls/data/Norris.shtml
Mosteller, F., Tukey, J.W.: Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley, Reading Mass (1977)
Solar Influence Data Analysis Center, Royal Observatory of Belgium: Sunspot and space weather information pages (online, accessed April 2005), http://sidc.oma.be/index.php3
Schölkopf, B., Smola, A.J.: Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Apolloni, B., Iannizzi, D., Malchiodi, D., Pedrycz, W. (2006). Granular Regression. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_22
Download citation
DOI: https://doi.org/10.1007/11731177_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33183-4
Online ISBN: 978-3-540-33184-1
eBook Packages: Computer ScienceComputer Science (R0)