Skip to main content

A General Learning Rule for Network Modeling of Neuroimmune Interactome

  • Conference paper
Neural Nets (WIRN 2005, NAIS 2005)

Abstract

We propose a network model in which the communication between its elements (cells, neurons and lymphocytes) can be established in various ways. The system evolution is driven by a set of equations that encodes various degrees of competition between elements. Each element has an “internal plasticity threshold” that, by setting the number of inputs and outputs, determines different network global topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bui, J.D., Calbo, S., Hayden-Martinez, K., Kane, L.P., Gardner, P., Hedrick, S.M.: A role for CaMkII in T cell memory. Cell 10, 457–467 (2000)

    Article  Google Scholar 

  2. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982)

    Google Scholar 

  3. Castellani, G.C., Giberti, C., Franceschi, C., Bersani, F.: Stable state analysis of an immune network model. Int. J. Chaos Bif. 8(6), 1285–1301 (1998)

    Article  MATH  Google Scholar 

  4. Bazzani, A., Remondini, D., Intrator, N., Castellani, G.C.: The effect of noise on a class of energy-based learning rules. Neural Comput. 15(7), 1621–1640 (2003)

    Article  MATH  Google Scholar 

  5. Castellani, G.C., Intrator, N., Shouval, H., Cooper, L.: Solution of the bcm learning rule in a network of lateral interacting nonlinear neurons. Network 10, 111–121 (1999)

    Article  MATH  Google Scholar 

  6. Coutinho, A.: Beyond clonal selection and network. Immunol. Rev. 110, 63–87 (1989)

    Article  Google Scholar 

  7. Castellani, G.C., Quinlan, E.M., Cooper, L.N., Shouval, H.Z.: A biophysical model of bidirectional synaptic plasticity: Dependence on ampa and nmda receptors. PNAS 98(22), 12772–12777 (2001)

    Article  Google Scholar 

  8. De Boer, R.J.: Symmetric idiotypic networks: Connectance and switching stability and suppression. Bull. Math. Biol. 55, 745–780 (1993)

    Article  Google Scholar 

  9. Remondini, D., Bazzani, A., Franceschi, C., Bersani, F., Verondini, E., Castellani, G.: Role of connectivity in immune and neural network models: memory development and aging. Riv. Biol. 96(2), 225–239 (2003)

    Google Scholar 

  10. Hoffmann, G.W., Kion, T.A., Forsyth, R.B., Soga, K.G., CooperWillis, A.: The n-dimensional network. In: Perelson, A.S. (ed.) Theoretical Immunology, Part 2, p. 291. Addison-Wesley, Reading (1988)

    Google Scholar 

  11. Hayden-Martinez, K., Kane, L.P., Hedrick, S.M.: Effects of a constitutively active form of calcineurin on t cell activation and thymic selection. J. Immunol. 165, 3713–3721 (2000)

    Article  Google Scholar 

  12. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79(8), 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoffmann, G.W.: A neural network model based on the analogy with the immune system. J. Theor. Biol. 122, 33–67 (1986)

    Article  MathSciNet  Google Scholar 

  14. Intrator, N., Cooper, L.N.: Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions. Neural Networks 5, 3–17 (1992)

    Article  Google Scholar 

  15. Jerne, N.K.: Towards a network theory of immune system. Annu. Immunol. 125, 373–389 (1974)

    Google Scholar 

  16. Perelson, A.S.: Immune network theory. Immunol. Rev. 110, 5–36 (1989)

    Article  Google Scholar 

  17. Perelson, A.S.: Mathematical approaches in immunology. In: Andersson, S.I. (ed.) Theory & Control of Dynamical Systems, pp. 200–230. World Scientific, Singapore (1992)

    Google Scholar 

  18. Tieri, P., Valensin, S., Franceschi, C., Morandi, C., Castellani, G.C.: Memory and selectivity in evolving scale-free immune networks. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 93–101. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Tieri, P., Valensin, S., Latora, V., Castellani, G.C., Marchiori, M., Remondini, D., Franceschi, C.: Quantifying the relevance of different mediators in the human immune cell network. Bioinformatics 21, 1639–1643 (2005)

    Article  Google Scholar 

  20. Stewart, J., Varela, F.J.: Exploring the meaning of connectivity in the immune network. Immunol. Rev. 110, 37–61 (1989)

    Article  Google Scholar 

  21. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  22. Barabasi, A.L., Albert, R.: Statistical mechanics of complex networks. Rev. of Mod. Phys. 74, 48–94 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Remondini, D. et al. (2006). A General Learning Rule for Network Modeling of Neuroimmune Interactome. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_36

Download citation

  • DOI: https://doi.org/10.1007/11731177_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33183-4

  • Online ISBN: 978-3-540-33184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics