Abstract
Recursive neural networks are a powerful tool for processing structured data. According to the recursive learning paradigm, the input information consists of directed positional acyclic graphs (DPAGs). In fact, recursive networks are fed following the partial order defined by the links of the graph. Unfortunately, the hypothesis of processing DPAGs is sometimes too restrictive, being the nature of some real–world problems intrinsically cyclic. In this paper, the methodology proposed in [1,2] to process cyclic directed graphs is tested on some interesting problems in the field of structural pattern recognition. Such preliminary experimentation shows very promising results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bianchini, M., Gori, M., Sarti, L., Scarselli, F.: Recursive processing of cyclic graphs. IEEE Transactions on Neural Networks with 17(1), 10–18 (2006)
Bianchini, M., Gori, M., Scarselli, F.: Recursive processing of cyclic graphs. In: IEEE International Joint Conference on Neural Networks, pp. 154–159 (2002)
Frasconi, P., Gori, M., Sperduti, A.: A general framework for adaptive processing of data structures. IEEE Transactions on Neural Networks 9, 768–786 (1998)
Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE Transactions on Neural Networks 8, 429–459 (1997)
Gori, M., Maggini, M., Martinelli, E., Scarselli, F.: Learning user profiles in NAUTILUS. In: International Conference on Adaptive Hypermedia and Adaptive Web–based Systems, Trento (Italy) (2000)
Bianchini, M., Maggini, M., Sarti, L., Scarselli, F.: Recursive neural networks learn to localize faces. Pattern Recognition Letters 26, 1885–1895 (2005)
Küchler, A., Goller, C.: Inductive learning in symbolic domains using structure– driven recurrent neural networks. In: Görz, G., Hölldobler, S. (eds.) Advances in Artificial Intelligence, pp. 183–197. Springer, Heidelberg (1996)
Bianchini, M., Mazzoni, P., Sarti, L., Scarselli, F.: Face spotting in color images using recursive neural networks. In: Gori, M., Marinai, S. (eds.) IAPR–TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, Florence (Italy), pp. 76–81 (2003)
Bianchini, M., Gori, M., Mazzoni, P., Sarti, L., Scarselli, F.: Face localization with recursive neural networks. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds.) WIRN 2003, vol. 2859, pp. 99–105. Springer, Heidelberg (2003)
Bianchini, M., Maggini, M., Sarti, L., Scarselli, F.: Recursive neural networks for object localization. In: Proceedings of IJCNN 2004, Budapest (Hungary), vol. 3, pp. 1911–1915. IEEE, Los Alamitos (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bianchini, M., Gori, M., Sarti, L., Scarselli, F. (2006). Recursive Neural Networks and Graphs: Dealing with Cycles. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_6
Download citation
DOI: https://doi.org/10.1007/11731177_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33183-4
Online ISBN: 978-3-540-33184-1
eBook Packages: Computer ScienceComputer Science (R0)