Abstract
A major goal of human genetics is the identification of susceptibility genes associated with common, complex diseases. The preponderance of gene-gene and gene-environment interactions comprising the genetic architecture of common diseases presents a difficult challenge. To address this, novel computational approaches have been applied to studies of human disease. These novel approaches seek to capture the complexity inherent in common diseases. Previously, we developed a genetic programming neural network (GPNN) to optimize network architecture for the detection of disease susceptibility genes in association studies. While GPNN was a successful endeavor, we wanted to address the limitations in its flexibility and ease of development. To this end, we developed a grammatical evolution neural network (GENN) approach that accounts for the drawbacks of GPNN. In this study we show that this new method has high power to detect gene-gene interactions in simulated data. We also compare the performance of GENN to GPNN, a traditional back-propagation neural network (BPNN) and a random search algorithm. GENN outperforms both BPNN and the random search, and performs at least as well as GPNN. This study demonstrates the utility of using GE to evolve NN in studies of complex human disease.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kardia, S., Rozek, L., Hahn, L., Fingerlin, T., Moore, J.: Identifying multilocus genetic risk profiles: a comparison of the multifactor data reduction method and logistic regression. Genetic Epidemiology (2000)
Moore, J.H., Williams, S.M.: New strategies for identifying gene-gene interactions in hypertension. Ann. Med. 34, 88–95 (2002)
Culverhouse, R., Klein, T., Shannon, W.: Detecting epistatic interactions contributing to quantitative traits. Genet. Epidemiol. 27, 141–152 (2004)
Hahn, L.W., Ritchie, M.D., Moore, J.H.: Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19, 376–382 (2003)
Kooperberg, C., Ruczinski, I., LeBlanc, M.L., Hsu, L.: Sequence analysis using logic regression. Genet. Epidemiol. 21(suppl. 1), S626–S631 (2001)
Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum. Hered. 56, 73–82 (2003)
Nelson, M.R., Kardia, S.L., Ferrell, R.E., Sing, C.F.: A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation. Genome. Res. 11, 458–470 (2001)
Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., et al.: Multifactordimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J. Hum. Genet. 69, 138–147 (2001)
Ritchie, M.D., Hahn, L.W., Moore, J.H.: Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet. Epidemiol. 24, 150–157 (2003)
Tahri-Daizadeh, N., Tregouet, D.A., Nicaud, V., Manuel, N., Cambien, F., Tiret, L.: Automated detection of informative combined effects in genetic association studies of complex traits. Genome. Res. 13, 1952–1960 (2003)
Zhu, J., Hastie, T.: Classification of gene microarrays by penalized logistic regression. Biostatistics 5, 427–443 (2004)
Schalkoff, R.: Artificial Neural Networks. McGraw-Hill Companies Inc., New York (1997)
Bhat, A., Lucek, P.R., Ott, J.: Analysis of complex traits using neural networks. Genet. Epidemiol. 17, S503–S507 (1999)
Curtis, D., North, B.V., Sham, P.: Use of an artificial neural network to detect association between a disease and multiple marker genotypes. Annals of Human Genetics 65, 95–107 (2001)
Li, W., Haghighi, F., Falk, C.: Design of artificial neural network and its applications to the analysis of alcoholism data. Genet. Epidemiol. 17, S223–S228 (1999)
Lucek, P., Hanke, J., Reich, J., Solla, S.A., Ott, J.: Multi-locus nonparametric linkage analysis of complex trait loci with neural networks. Hum. Hered. 48, 275–284 (1998)
Lucek, P.R., Ott, J.: Neural network analysis of complex traits. Genet. Epidemiol. 14, 1101–1106 (1997)
Marinov, M., Weeks, D.: The complexity of linkage analysis with neural networks. Human Heredity 51, 169–176 (2001)
Ott, J.: Neural networks and disease association. American Journal of Medical Genetics (Neuropsychiatric Genetics) 105(60), 61 (2001)
Saccone, N.L., Downey, T.J., Meyer, D.J., Neuman, R.J., Rice, J.P.: Mapping genotype to phenotype for linkage analysis. Genet Epidemiol 17(suppl.), 703–708 (1999)
Sherriff, A., Ott, J.: Applications of neural networks for geen finding. Advances in Genetics 42, 287–297 (2001)
Ritchie, M.D., White, B.C., Parker, J.S., Hahn, L.W., Moore, J.H.: Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases. BMC Bioinformatics 4, 28 (2003)
Koza, J., Rice, J.: Genetic generation of both the weights and architecture for a neural network. IEEE Transactions, II (1991)
Motsinger, A.A., Lee, S., Mellick, G., Ritchie, M.D.: GPNN: Power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease. BMC Bioinformatics (2005) (in press)
Bush, W.S., Motsinger, A.A., Dudek, S.M., Ritchie, M.D.: Can neural network constraints in GP provide power to detect genes associated with human disease? In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 44–53. Springer, Heidelberg (2005)
Ritchie, M.D., Coffey, C.S., Moore, J.H.: Genetic programming neural networks as a bioinformatics tool for human genetics. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 438–448. Springer, Heidelberg (2004)
O’Neill, M., Ryan, C.: Grammatical Evolution. IEEE Transactions on Evolutionary Computation 5, 349–357 (2001)
O’Neill, M., Ryan, C.: Grammatical evolution: Evolutionary automatic programming in an arbitrary language. Kluwer Academic Publishers, Boston (2003)
Moore, J.H., Hahn, L.W.: Petri net modeling of high-order genetic systems using grammatical evolution. BioSystems 72, 177–186 (2003)
Mitchell, M.: An introduction to genetic algorithms. MIT Press, Cambridge (1996)
Cantu-Paz, E.: Efficient and accurate parallel genetic algorithms. Kluwer Academic Publishers, Boston (2000)
Utans, J., Moody, J.: Selecting neural network architectures via the prediction risk application to corporate bond rating prediction. In: Conference Proceedings on the First International Conference on Artificial Intelligence Applications on Wall Street. IEEE Press, Los Alamitos (1991)
Moody, J.: Prediction risk and architecture selection for neural networks. In: Cherkassky, V., Friedman, J.H., Wechsler, H. (eds.) From Statistics to Nerual Networks: Theory and Pattern Recognition Applications. NATO ASI Series F, Springer, Heidelberg (1994)
Fahlman, S.E., Lebiere, C.: The Cascade-Correlation Learning Architecture. Masters from School of Computer Science. Carnegie Mellon University (1991)
Templeton, A.: Epistasis and complex traits. In: Wade, M., Broadie III, B., Wolf, J. (eds.) Epistasis and the Evolutionary Process, pp. 41–57. Oxford University Press, Oxford (2000)
Li, W., Reich, J.: A complete enumeration and classification of two-locus disease models. Hum.Hered. 50, 334–349 (2000)
Moore, J., Hahn, L., Ritchie, M., Thornton, T., White, B.: Application of genetic algorithms to the discovery of complex models for simulation studies in human genetics. In: Langdon, W.B., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) Proceedings of the Genetic and Evolutionary Algorithm Conference, pp. 1150–1155. Morgan Kaufman Publishers, San Francisco (2002)
Anderson, J.: An Introduction to Neural Networks. MIT Press, Cambridge, Massachusetts (1995)
Culverhouse, R., Suarez, B.K., Lin, J., Reich, T.: A perspective on epistasis: limits of models displaying no main effect. Am J. Hum. Genet. 70, 461–471 (2002)
Frankel, W., Schork, N.: Who’s afraid of epistasis? Nat.Genet. 14, 371–373 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Motsinger, A.A., Dudek, S.M., Hahn, L.W., Ritchie, M.D. (2006). Comparison of Neural Network Optimization Approaches for Studies of Human Genetics. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_10
Download citation
DOI: https://doi.org/10.1007/11732242_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33237-4
Online ISBN: 978-3-540-33238-1
eBook Packages: Computer ScienceComputer Science (R0)