Skip to main content

DNA Fragment Assembly: An Ant Colony System Approach

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3907))

Abstract

This paper presents the use of an ant colony system (ACS) algorithm in DNA fragment assembly. The assembly problem generally arises during the sequencing of large strands of DNA where the strands are needed to be shotgun-replicated and broken into fragments that are small enough for sequencing. The assembly problem can thus be classified as a combinatorial optimisation problem where the aim is to find the right order of each fragment in the ordering sequence that leads to the formation of a consensus sequence that truly reflects the original DNA strands. The assembly procedure proposed is composed of two stages: fragment assembly and contiguous sequence (contig) assembly. In the fragment assembly stage, a possible alignment between fragments is determined with the use of a Smith-Waterman algorithm where the fragment ordering sequence is created using the ACS algorithm. The resulting contigs are then assembled together using a nearest neighbour heuristic (NNH) rule. The results indicate that in overall the performance of the combined ACS/NNH technique is superior to that of the NNH search and a CAP3 program. The results also reveal that the solutions produced by the CAP3 program contain a higher number of contigs than the solutions produced by the proposed technique. In addition, the quality of the combined ACS/NNH solutions is higher than that of the CAP3 solutions when the problem size is large.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001)

    Google Scholar 

  2. Applewhite, A.: Mining the genome. IEEE Spectrum 39(4), 69–71 (2002)

    Article  Google Scholar 

  3. Pop, M., Salzberg, S.L., Shumway, M.: Genome sequence assembly: Algorithms and issues. Computer 35(7), 47–54 (2002)

    Article  Google Scholar 

  4. Huang, X., Madan, A.: CAP3: A DNA sequence assembly program. Genome Research 9(9), 868–877 (1999)

    Article  Google Scholar 

  5. Green, P.: Phrap documentation. Phred, Phrap, and Consed (2004), www.phrap.org

  6. Ferreira, C.E., de Souza, C.C., Wakabayashi, Y.: Rearrangement of DNA fragments: A branch-and-cut algorithm. Discrete Applied Mathematics 116(1-2), 161–177 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Batzoglou, S., Jaffe, D., Stanley, K., Butler, J., Gnerre, S., Mauceli, E., Berger, B., Mesirov, J.P., Lander, E.S.: ARACHNE: A whole-genome shotgun assembler. Genome Research 12(1), 177–189 (2002)

    Article  Google Scholar 

  8. Kececioglu, J.D., Myers, E.W.: Combinatorial algorithms for DNA sequence assembly. Algorithmica 13(1-2), 7–51 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proceedings of the National Academy of Sciences of the United States of America 98(17), 9748–9753 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burks, C., Engle, M., Forrest, S., Parsons, R., Soderlund, C., Stolorz, P.: Stochastic optimization tools for genomic sequence assembly. In: Adams, M.D., Fields, C., Venter, J.C. (eds.) Automated DNA Sequencing and Analysis., pp. 249–259. Academic Press, London (1994)

    Google Scholar 

  11. Parsons, R.J., Forrest, S., Burks, C.: Genetic algorithms, operators, and DNA fragment assembly. Machine Learning 21(1-2), 11–33 (1995)

    Article  Google Scholar 

  12. Parsons, R.J., Johnson, M.E.: A case study in experimental design applied to genetic algorithms with applications to DNA sequence assembly. American Journal of Mathematical and Management Sciences 17(3-4), 369–396 (1997)

    Google Scholar 

  13. Kim, K., Mohan, C.K.: Parallel hierarchical adaptive genetic algorithm for fragment assembly. In: Proceedings of the 2003 Congress on Evolutionary Computation, Canberra, Australia, pp. 600–607 (2003)

    Google Scholar 

  14. Angeleri, E., Apolloni, B., de Falco, D., Grandi, L.: DNA fragment assembly using neural prediction techniques. International Journal of Neural Systems 9(6), 523–544 (1999)

    Article  Google Scholar 

  15. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  16. Allex, C.F., Baldwin, S.F., Shavlik, J.W., Blattner, F.R.: Improving the quality of automatic DNA sequence assembly using fluorescent trace-data classifications. In: Proceedings of the Fourth International Conference on Intelligent Systems for Molecular Biology, St. Louis, MO, pp. 3–14 (1996)

    Google Scholar 

  17. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147(1), 195–197 (1981)

    Article  Google Scholar 

  18. Huang, X., Miller, W.: A time-efficient, linear-space local similarity algorithm. Advances in Applied Mathematics 12(3), 337–357 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wetcharaporn, W., Chaiyaratana, N., Tongsima, S. (2006). DNA Fragment Assembly: An Ant Colony System Approach. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_21

Download citation

  • DOI: https://doi.org/10.1007/11732242_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33237-4

  • Online ISBN: 978-3-540-33238-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics