Skip to main content

A Novel Mathematical Model for the Optimization of DNA–Chip Design and Its Implementation

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3907))

Included in the following conference series:

  • 1548 Accesses

Abstract

A variety of recent achievements in the field of biology, chemistry and information technology have made possible the development of DNA chips. They allow us to analyze the sequences and functions of different genes simultaneously and detect small differences in those. They are source of tremendous amount of data in the field of Bioinformatics. Moreover, the engineering process of DNA chip requires the latest results of information technology, too. In this paper, we address the mathematical problem of the prediction the hybridization process on the chip surface. A novel in situ in silico approach is presented and the obtained results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chiu, G.T., Shaw, J.: Optical lithography. IBM Journal of Research and Development 41 (January 24, 1997)

    Google Scholar 

  2. Chee, M., Yang, R., Hubbel, E., Berno, A., Huang, X., Stern, D., Winkler, J., Lockad, D., Morris, M.: SP.Fodor: Accessing genetic information with high-density dna arrays. Science 274, 610–613 (1996)

    Article  Google Scholar 

  3. Fodor, S., Rava, R., Huang, X., Pease, A., Holmes, C., Adams, C.: Multiplexed biochemical assays with biological chips. Nature 364, 555–556 (1993)

    Article  Google Scholar 

  4. Fodor, S., Read, J., Pissung, M., Stryer, L., Lu, A., Solas, D.: Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995), 767–773 (1991)

    Article  Google Scholar 

  5. Panjkovich, A., Melo, F.: Comparison of different melting temperature calculation methods for short dna sequences. Bioinformatics 21(6), 711–722 (2005)

    Article  Google Scholar 

  6. Panjkovich, A., Norambuena, T., Melo, F.: Dnamate: a consensus melting temperature prediction server for short dna sequences. Nucleic Acids Res. 33(suppl. 2), 570–572 (2005)

    Article  Google Scholar 

  7. Lee, I., Dombkowski, A., Athey, B.: Guidelines for incorporating non-perfectly matched oligonucleotides into target-specific hybridisation probes for a dna microarray. Nucleic Acids Research 32(2), 681–690 (2004)

    Article  Google Scholar 

  8. Rouillard, J.M., Zuker, M., Gulari, E.: Oligoarray 2.0: design of oligonucleotide probes for dna microarrays using a thermodinamic approach. Nucleic Acids Research 31(12), 3057–3062 (2003)

    Article  Google Scholar 

  9. Breslauer, K., Frank, R., Blocker, H., Marky, L.: Predicting dna duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750 (1986)

    Article  Google Scholar 

  10. Freier, S., Kierzek, R., Jaeger, J., Sugimoto, N., Caruthers, M., Neilson, T., Turner, D.: Improved parameters for predictions of rna rna duplex stability. Proc. Natl. Acad. Sci. 83, 9373–9377 (1986)

    Article  Google Scholar 

  11. Wallace, R., Shaffer, J., Murphy, R., Bonner, J., Hirose, T., Itakura, K.: Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 dna: the effect of single base pair mismatch. Nucleic Acids Res. 6, 3543–3557 (1979)

    Article  Google Scholar 

  12. Howley, P., Israel, M., Law, M., Martin, M.: A rapid method for detecting and mapping homology between heterologous dnas. Evaluation of polyomavirus genomes. JBC 254, 4876–4883 (1979)

    Google Scholar 

  13. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  14. Berendsen, H., van der Spoel, D., van Drunen, R.: Gromacs: A message passing parallel md implementation. Comp. Phys. Comm. 91, 43–56 (1995)

    Article  Google Scholar 

  15. Sanbonmatsu, K.Y., Joseph, S., Tung, C.S.: Simulating movement of trna into the ribosome during decoding. In: PNAS 2005, vol. 102, pp. 15854–15859 (2005)

    Google Scholar 

  16. Inc., A.S.: Insight ii molecular modeling and simulation enviornment (2005)

    Google Scholar 

  17. For Macromolecular Modeling, N.R., Bioinformatics: Scalable molecular dynamics (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danyi, K., Kókai, G., Csontos, J. (2006). A Novel Mathematical Model for the Optimization of DNA–Chip Design and Its Implementation. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_3

Download citation

  • DOI: https://doi.org/10.1007/11732242_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33237-4

  • Online ISBN: 978-3-540-33238-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics