Abstract
This paper describes an image segmentation method based on an evolutionary approach. Unlike other application of evolutionary algorithms to this problem, our method does not require the definition of a global fitness function. Instead a survival probability for each individual guides the progress of the algorithm. The evolution involves the colonization of a bidimensional world by a number of populations. The individuals, belonging to different populations, compete to occupy all the available space and adapt to the local environmental characteristics of the world. We present various sets of experiments on simulated MR brain images in order to determine the optimal parameter settings. Experimental results on real image are also reported. Images used in this work are color camera photographs of beef meat.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26, 1277–1294 (1993)
Bhanu, B., Lee, S., Ming, J.: Adaptive image segmentation using a genetic algorithm. IEEE Transactions on Systems, Man and Cybernetics 25, 1543–1567 (1995)
Bhandarkar, S.M., Zhang, H.: Image segmentation using evolutionary computation. IEEE Transactions on Evolutionary Computation 3, 1–21 (1999)
Andrey, P.: Selectionist relaxation: Genetic algorithms applied to image segmentation. Image and Vision Computing 17, 175–187 (1999)
Liu, J., Tang, Y.Y.: Adaptive image segmentation with distributed behavior-based agents. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 544–551 (1999)
Veenman, C.J., Reinders, M.J.T., Backer, E.: Acellular coevolutionary algorithmfor image segmentation. IEEE Transactions on Image Processing 12, 304–313 (2003)
Ramos, V., Almeida, F.: Artificial ant colonies in digital image habitats - a mass behaviour effect study on pattern recognition. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 113–116. Springer, Heidelberg (2000)
Gardner, M.: The fantastic combinations of John Conway’s new solitaire game ”life”. Scientifican American 223, 120–123 (1970)
Bocchi, L., Ballerini, L., Hässler, S.: A new evolutionary algorithm for image segmentation. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 264–273. Springer, Heidelberg (2005)
Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Transactions on Medical Imaging 17, 463–468 (1998)
Ballerini, L.: Genetic snakes for color images segmentation. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 268–277. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bocchi, L., Ballerini, L. (2006). Image Space Colonization Algorithm. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_32
Download citation
DOI: https://doi.org/10.1007/11732242_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33237-4
Online ISBN: 978-3-540-33238-1
eBook Packages: Computer ScienceComputer Science (R0)