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Abstract

This paper describes an approach to the use of genetic programming (GP)
for the automatic detection of rhythmic stress in spoken New Zealand English.
A linear-structured GP system uses speaker independent prosodic features and
vowel quality features as terminals to classify each vowel segment as stressed or
unstressed. Error rate is used as the fitness function. In addition to the stan-
dard four arithmetic operators, this approach also uses several other arithmetic,
trigonometric, and conditional functions in the function set. The approach is eval-
uated on 60 female adult utterances with 703 vowels and a maximum accuracy
of 92.61% is achieved. The approach is compared with decision trees (DT) and
support vector machines (SVM). The results suggest that, on our data set, GP
outperforms DT and SVM for stress detection, and GP has stronger automatic
feature selection capability than DT and SVM.

Keywords Speech recognition, stress detection, genetic programming, decision
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1 Introduction

Stress is a form of prominence in spoken language. Usually, stress is seen as a property of
a syllable or of the vowel nucleus of the syllable. There are two types of stress in English.
Lezical stress refers to the relative prominences of syllables in individual words. Rhythmic
stress refers to the relative prominences of syllables in longer stretches of speech than an
isolated word. When words are used in utterances, their lexical stress may be altered to
reflect the rhythmic (as well as semantic) structure of the utterance.

As English becomes more and more important as a communication tool for people from
all countries, there is an ever increasing demand for good quality teaching of English as a
Second Language (ESL). Learning English well requires lots of practice and a great deal of
individualised feedback to identify and correct errors. Providing this individualised feedback
from ESL teachers is very expensive, therefore computer software that could help ESL learners
to speak as a native speaker is highly desirable. Properly placing rhythmic stress is one of
the important steps for teaching ESL students to have good speech production. Thus to be
able to automatically detect the rhythmic stress patterns in students’ speech becomes a really
important functionality in this kind of computer software.

There are a number of prosodic (sometimes referred to as ‘suprasegmental’) features that
relate to stress. Thus the perception of a syllable as stressed or unstressed may depend on its
relative duration, its amplitude and its pitch. Duration is simply how long the syllable lasts.
Amplitude relates to the perceived loudness of the syllable, and is a measure of its energy.
Pitch is the perceptual correlate of the fundamental frequency (Fp) of the sound signal, i.e.
the rate of vibration of the vocal folds during voiced segments.

A further correlate of stress is the quality of the vowel in a syllable. Vowels are split
into full vowels and reduced vowels in terms of the quality based on the configuration of
the tongue, jaw, and lips [1]. Full vowels tend to be more peripheral, and appear in both
stressed syllables and unstressed syllables [2]. Reduced vowels, including /@/ and /I/ in New
Zealand English, tend to be more central, and are only associated with unstressed syllables.
Therefore, vowel quality is not a completely reliable indicator of stress [2].

In order to automatically detect rhythmic stress, prosodic features and vowel quality
features as two main sets of features have been studied by many researchers using machine
learning algorithms.

Waibel [3] used duration, amplitude, pitch, and spectral change to identify rhythmically
stressed syllables. A Bayesian classifier, assuming multivariate Gaussian distributions, was
adopted and 85.6% accuracy was achieved. Jenkin and Scordilis [4] used duration, energy,
amplitude, and pitch to classify vowels into three levels of stress — primary, secondary, and
unstressed. Neural networks, Markov chains, and rule-based approaches were adopted. The
best overall performance was 84% by using Neural networks. Rule-based systems performed
worse with 75%. Van Kuijk and Boves [5] used duration, energy, and spectral tilt to identify
rhythmically stressed vowels in Dutch — a language with similar stress patterns to those
of English. A simple Bayesian classifier was adopted, on the grounds that the features can
be jointly modelled by a N-dimensional normal distribution. The best overall performance
achieved was 68%. Our previous work [6] used duration, amplitude, pitch and vowel quality
to identify rhythmically stressed vowels. Decision trees and support vector machines were
applied and the best accuracy, 8%, was achieved by support vector machines.

However, the accuracies of the automatic stress detection from the literature are not
high enough to be useful for a commercial system. The automatic rhythmic stress detection
remains a challenge to speech recognition.

Genetic programming (GP) has grown very rapidly and has been studied widely in many
areas since the early 1990s. Conrads et al. [7] demonstrated that GP could find programs



that were able to discriminate certain spoken vowels and consonants without pre-processing
speech signals. However, there are only a few studies using GP in the automatic speech
recognition and analysis area. Most current research on automatic rhythmic stress detection
uses other machine learning algorithms rather than GP.

1.1 Goals

This paper aims to use GP to develop an approach to automatic rhythmic stress detection
in spoken New Zealand (NZ) English. The approach will be examined and compared with
other machine learning techniques such as decision tress (DT) and support vector machines
(SVM) on a set of NZ English utterances. Specifically, we investigate:

e how GP can be used to construct an automatic rhythmic stress detector,
e whether GP outperforms DT and SVM on the automatic problem, and

e whether GP has a stronger capability of handling irrelevant features than DT or SVM.

The remainder of the paper is organised as follows: section 2 describes the GP approach;
section 3 presents the experiment design; section 4 provides experiment results, and section
5 draws conclusions and discusses possible future work.

2 GP Adapted to Stress Detection

A linear-structured GP system [8] is adopted to construct an automatic rhythmic stress
detector in this study. This section addresses: 1) the feature extraction and normalisation;
2) the terminal sets; 3) the function set; 4) the fitness function; and 5) the genetic parameters
and termination criteria.

2.1 Feature Extraction and Normalisation

As prosodic features and vowel quality features are recognised as the two main sets of features
for automatic stress detection, we also use both of them in the approach. For each of the
prosodic parameters (duration, amplitude, pitch), there are many alternative measurements
that can be extracted, and also many ways of normalising the features in order to reduce
variation due to differences between speakers, recording situations or utterance contexts.
Vowel quality features are more difficult to extract. The subsections below describe the
details of the feature extraction and normalisation.

2.1.1 Duration Features.

The absolute duration of a vowel segment is easily calculated directly from the hand labelled
utterances since the start and end points of the vowel segment are clearly marked. Three
different levels of normalisation are applied to the directly calculated absolute duration of a
vowel segment. The first level normalisation aims to reduce the impact of the different speech
rate of speakers. The second level normalisation aims to reduce the effects of the intrinsic
duration properties of the vowel. Both narrow and broad methods are considered. The
narrow method is to normalise the vowel segment duration by the average duration for that
vowel type, as measured in the training data set. The broad method is to cluster the 20 vowel
types into three categories (short vowel, long vowel and diphthong) and to normalise vowel
segment durations by the average duration of all vowels in the relevant category. The third
level normalisation aims to reduce the effects of the local fluctuations in speech rate within



the utterance. Based on the three levels of normalisation, we have five duration features for
each vowel segment:

e D;: the absolute duration normalised by the length of the utterance.
e Dy: D further normalised by the average duration of the vowel type.
e D3: D further normalised by the average duration of the vowel category.

e Dy: Dy further normalised by a weighted average duration of the immediately sur-
rounding vowel segments.

e Ds: D3 further normalised by a weighted average duration of the immediately sur-
rounding vowel segments.

2.1.2 Amplitude Features.

The amplitude of a vowel segment can be measured from the speech signal, but since ampli-
tude changes during the vowel, there are a number of possible measurements that could be
made — maximum amplitude, initial amplitude, change in amplitude, etc. A measure com-
monly understood to be a close correlate to the perception of amplitude differences between
vowels is the root mean square (RMS) of the amplitude values across the entire vowel. This
is the measure chosen as the basis of our amplitude features. Two levels of normalisations
are applied to the RMS amplitude value across a vowel segment. The first level normalisa-
tion aims to reduce the effects of speaker voice volume differences and recording condition
differences. It is done by normalising the RMS amplitude of each vowel segment against the
overall RMS amplitude of the entire utterance. The second level normalisation aims to reduce
the effects of changes in amplitude across the utterance. We normalise the vowel amplitude
against a weighted average amplitude of the immediately surrounding vowel segments.

e Aj: the RMS amplitude of each vowel segment normalised by the overall RMS ampli-
tude of the entire utterance.

e As: A; further normalised by a weighted average amplitude of the immediately sur-
rounding vowel segments.

2.1.3 Pitch Features.

Pitch is calculated by measuring Fj of the speech signal. Five pitch features of a vowel
segment are computed, including the mean pitch value of the vowel segment, the pitch values
at the start and at the end points of the vowel segment, and the minimum and maximum
pitch values of the vowel segment. In order to reduce the effects of speaker differences caused
by their different physiologies, we normalise the five pitch features of a vowel segment over the
mean pitch of the entire utterance. In addition, based on the five normalised pitch features,
we compute five other features that are intended to capture pitch changes over the vowel
segment.

e P;: the mean pitch value of the vowel normalised by the mean pitch of the utterance.

e P,: the pitch value at the start point of the vowel normalised by the mean pitch of the
utterance.

e P5: the pitch value at the end point of the vowel normalised by the mean pitch of the
utterance.



e Pj: the maximum pitch value of the vowel normalised by the mean pitch of the utter-
ance.

e Ps: the minimum pitch value of the vowel normalised by the mean pitch of the utterance.

e [P: the difference between the normalised maximum and minimum pitch values — a
negative value indicates a falling pitch and a positive value indicates a rising pitch.

e P;: the magnitude of Py, which is always positive.

e Py: the sign of Py — 1 if the pitch “rises” over the vowel segment, -1 if it “falls”, and
0 if it is “flat”.
e Py: a boolean attribute — 1 if the pitch value at either the start point or the end point

of the vowel segment cannot be detected, otherwise -1.

e Pjy: a boolean attribute — 1 if the vowel segment is too short to compute meaningful
mean, minimum, or maximum values, otherwise -1.

2.1.4 Vowel Quality Features.

Since there is some flexibility in the formation of a vowel, there will in fact be a range of
articulator parameter values that correspond to the same vowel. Therefore, vowel quality
features are more difficult to extract. Pre-trained Hidden Markov Models (HMMs) phoneme
models are used to analyse vowel segments and extract measures of vowel quality [9]. The
algorithm is illustrated in figure 1 and outlined below.
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Figure 1: Vowel quality features processing.

Step 1 Extract vowel segments from the hand labelled utterance.



Step 2 Encode each vowel into a sequence of acoustic parameter vectors, using a 15ms
Hamming window with a step size (frame period) of 11ms. These parameters consist
of 12 MFCC features and the 0’th cepstral coefficient with their first and second order
derivatives.

Step 3 Feed the parameter vector sequence into the 20 pre-trained HMM vowel recognisers
to obtain 20 normalised acoustic likelihood scores. Each score is the geometric mean
of the acoustic likelihoods of all frames in the segment, as computed by the HMM
recogniser. The scores are likelihoods that reflect how well the segment matches the
vowel type of the HMM.

Step 4 Find the score of the labelled vowel type S, the maximum score of any full vowel
phoneme Sy and the maximum score of any reduced vowel phoneme S, from the above
20 scores.

Step 5 We then compare the scores of the best matching full vowel and the best matching
reduced vowel to the score of the labelled vowel. We compute four features, two of
which measure the difference between the likelihoods, and two measure the ratio of the
likelihoods. In each case, we take logarithms to reduce the spread of values:

—log(S, — Se) if Se < S,
Ry = 0 if Se = S’r (1)
log(Se — Sr) if S, > S,

—log(Sy — Se) if Se < Sy
F;=<¢ 0 if Se =Sy (2)
log(Se — Sy) if Se > S¢
R, =log(S./S;) =log S. — log S, (3)
F, =1og(S./Sf) =log Se — log Sy (4)

Step 6 We also compute a boolean vowel quality feature, T', to deal with cases where the
vowel segment is so short that F' or R cannot be calculated. If the vowel segment
is less than 33ms, which is the minimum segment duration requirement of the HMM
recognisers, then the value of this attribute will be 1. Otherwise, -1. If this value is 1,
we set F' and R to 0.

2.2 Terminal Sets

All the features introduced in section 2.1 were organised into three terminal sets. Terminal set
I consists of 17 prosodic features (five duration features, two amplitude features, and 10 pitch
features). Terminal set II consists of five vowel quality features. Terminal set I1I consists of all
features combined from the prosodic and vowel quality features. Features whose values have
not been explicitly mentioned in previous sections are floating point numbers with precisions
up to seven digits. In each terminal set, we also include real-valued constants in the range
[—1.0,1.0].



2.3 Functions

The function set contains not only the four standard arithmetic functions, but also several
other arithmetic and trigonometric functions and conditional functions, as shown in equation
5.

FuncSet = {abs, sqrt, cos, sin,+, —, x, /, iflt, ifpr, ifnr} (5)

Each of the first four mathematical operators takes a single argument. The abs function
returns the absolute value of the argument. The protected sqrt function returns the square
root of the argument. The cos or sin functions return the cosine or sine values of the argument
respectively. Each of the 4+, —, %, and / operators takes two arguments. They have their usual
meanings except that the / operator is protected division that returns 0 if its second argument
is 0. The three conditional functions each takes two arguments. The ifit function returns 1
if the first argument is less than the second one, otherwise 0. The ifpr function returns the
second argument if the first argument is positive, otherwise does nothing. The ifnr function
returns the second argument if the first argument is negative, otherwise does nothing. Note
that there is a redundancy in that the conditional functions could be expressed in terms of
each other. There is a trade off between the increased breadth of the search space resulting
from having redundant functions, and the more complex programs (hence a deeper search of
the search space) resulting from a minimal set of non-redundant functions. We believe that
the smaller programs that are possible with the expanded function set more than compensates
for the broader search space.

2.4 Fitness Function

Error rate is used as the fitness function to evaluate programs. The classification error rate of
a program is the fraction of fitness cases in the training data set that are incorrectly classified
by the program. Rhythmic stressed vowel segments and unstressed vowel segments are both
treated as important so that neither class is weighted over the other. In our data set, class
stressed is represented by 1 and class unstressed is represented by -1. If a program’s output is
greater than or equal to 0, then the output is counted as a class stressed output. Otherwise,
it is counted as a class unstressed output.

2.5 Parameters and Termination Criteria

In this GP system the learning process uses the tournament selection mechanism with size
four and the crossover, mutation and reproduction operators. It is worth noting that in
this GP system, the crossover and mutation operators are independent in that the mutation
operator can be applied regardless of whether a tournament winner has also been selected
for crossover, so that the sum of the crossover rate and the mutation rate may be more than
100%. The selection of parameter values used in this study is shown in Table 1. These values
were obtained through prior empirical research. The unusually high mutation rates were
found to be the most helpful for this problem.

The learning/evolutionary process is terminated when either of the following criteria is
met:

e The classification problem has been solved on the training data set, that is, all vowel
segments in the training set have been correctly classified, with the fitness of the best
program being zero.

e The number of generations reaches the pre-defined maximum number of generations
without improvement (maz-gwi). In this study, max-gwi is set at 200, which means



Table 1: Parameters used for GP training for three terminal sets.

| Parameter Kind | Parameter Name | T [ 1T | 10|
Search Population size 1024 | 1024 | 1024
Parameters maz-gwsi 200 200 200
Genetic Crossover rate 1% | 57% | 47%
Parameters Mutation rate 9% | 8% | 83%
Program Initial program size 80 80 80
Parameters Max program size 256 256 256

that, if fitness values have had no improvement within 200 generations, the learning
process will terminate.

3 Experiment Design

The system uses a data set collected by the School of Linguistics and Applied Language
Studies at Victoria University of Wellington. The date set contains 60 utterances of ten
distinct English sentences produced by six female adult NZ speakers, as part of the NZ
Spoken English Database (www.vuw.ac.nz/lals/nzsed). The utterances were hand labelled
at the phoneme level, including the time stamps of the start and the end of a phoneme
segment and the phoneme label. Further, each vowel was labelled as rhythmic stressed or
unstressed. There were 703 vowels in the utterances, of which 340 are marked as stressed
and 363 are marked unstressed. Prosodic features and vowel quality features of each vowel
segment are calculated from the hand labelled utterances.

Three experiments were conducted on the three terminal sets respectively. For each
terminal set, since the data set was relatively small, a 10-fold cross validation method for
training and testing the automatic rhythmic stress detectors was applied. In addition, the
training and testing process was repeated ten times, that is, 100 runs of training and testing
procedures were made in total for each terminal set. The average classification accuracy of
the best program in each experiment is calculated from the outputs of the 100 runs.

In addition, we investigate whether scaling the feature values in the three terminal sets
to the range [—1, 1] results in better performance.

We also compare our GP approach with the C4.5 [10] decision tree (DT) system and a
SVM system (LIBSVM [11]) on the same set of data. The SVM system uses an RBF kernel
and a C parameter of 1.0.

4 Results and Analysis

4.1 Detection Performance
4.1.1 Terminal Set I.

Table 2 shows system performance of Terminal Set 1. Based on the average of 100 runs, GP
achieved the best accuracy on the test set (91.9%). The accuracy of GP was 11.5% and 12.2%
higher than that of DT and SVM respectively on unscaled data, and was 11.0% and 8.4%
higher on scaled. There is little evidence showing any impact of using scaled data on GP and
DT. However, there is an improvement of 3.5% by using scaled data for SVM.



Table 2: Accuracy(%) for the terminal set I.

| | Gp | DT | SVM ]
Unscaled 91.9 80.4 79.7
Scaled 91.6 80.6 83.2

4.1.2 Terminal Set II.

Table 3 shows the experiment results of Terminal Set II. GP also achieved the best accuracy of
85.4%. The accuracy of GP was 5.7% and 6.3% higher than that of DT and SVM respectively
on unscaled data, and was 5.7% and 4.1% higher on scaled. There is also little evidence to
show any impact of scaled data.

Table 3: Accuracy(%) for the terminal set II.

| | Gp | DT | SVM ]
Unscaled 85.4 79.7 79.1
Scaled 84.6 78.9 80.5

4.1.3 Terminal Set III.

Table 4 shows the results of Terminal Set I1I, which combines all the features used in Terminal
Set I and Terminal Set II. Again, the best accuracy of 92.6% was achieved by GP. GP
outperformed DT and SVM by 12.1% and 10.8% on unscaled data respectively, and by
12.6% and 10.6% on scaled. For all three systems, accuracies on scaled data were invariably
higher than those on the unscaled data but the differences were very small.

Table 4: Accuracy(%) for the terminal set III.

| | GP | DT | SVM |
Unscaled 92.0 79.9 81.3
Scaled 92.6 80.1 82.0

Comparing the results of all three terminal sets, we obtained the following observations.

On all terminal sets, regardless of whether the data are scaled or unscaled, accuracy of
GP is consistently and significantly higher than that of DT and SVM. This indicates
that GP is more effective than DT and SVM on the automatic stress detection problem
on our data set.

For all systems, Terminal Set I consistently returns higher accuracies than terminal set
II. This indicates that either prosodic features are more accurate than vowel quality
features, or that vowel quality feature extraction needs to be further improved.

Maximising the coverage of features (using Terminal Set IIT) resulted in some improve-
ment for GP, but not for DT and SVM. Since terminal set III has the most complete set
of features, it is likely that not all of them are necessary in detecting stress. Therefore
the difference in performance of Terminal Set I and Terminal Set III could be used as
an indication of how robust a system is at handling unnecessary and irrelevant features.
Except for GP, both DT’s and SVM’s best accuracy scores dropped on Terminal Set
I11, therefore GP is the most robust algorithm among the three at handling unnecessary
and irrelevant features on our data set.



4.2 Feature Impact Analysis

The top thirty programs in each run were analysed and the average impact of each terminal
input in programs was computed as a percentage, as shown in Tables 5 and 6. The impact
of a terminal input refers to the change of the performance of a program if all occurrences of
the terminal input are removed from the program.

Table 5: Impact analysis for prosodic features.

Unscaled Scaled
Input | Average Impact(%) Input | Average Impact(%)
Ds 27.7 Ds 28.2
D3 27.4 D3 16.5
Do 15.1 Dy 13.4
Dy 13.7 Dy 12.9
D1 8.3 Do 7.8
Al 2.3 Ao 1.4
Ao 1.1 Ay 1.4
Py 1.1 Ps 0.6
P 0.7 Ps 0.6
Ps 0.7 Py 0.6
Ps 0.6 Py 0.5
Py 0.4 P 0.4
Ps 0.3 Py 0.4
Pio 0.3 Py 0.2
Pr 0.3 Pio 0.2
Ps 0.1 Py 0.2
Py 0.1 Ps 0.1

Table 5 shows the impact of the prosodic features. The patterns of the impact of prosodic
features are similar on both unscaled data and scaled data. Three broad bands of impact
emerged as high (above 5%, including all duration features), medium (1% to 5%, including
amplitude features), and low (under 1% including all pictch features), corrsponding exactly
with the three feature categories - duration, amplitude and pitch. This indicates duration has
a bigger impact than amplitude while pitch has the smallest impact. On both unscaled and
scaled data set, D5 and D3 are ranked as the first and second, indicating that normalisations
of a duration feature over the average duration of a vowel category is better than that over
the average duration of a vowel type.

The ranking of duration, amplitude and pitch in terms of impact in this study matches
the result in [6]. However, only one experiment was conducted in this study whereas seven
experiments with various combinations of the feature sets were conducted in [6], where DT
and SVM were used. This suggests that: 1) GP has stronger feature selection ability than
DT and SVM on the problem; 2) GP can automatically handle a large number of features;
and 3) GP can automatically select features that are only important to a particular domain.

As shown in Table 6, R4y and R, have a much larger impact than Fy, F,, and T on both
unscaled and scaled data. On unscaled data R;’s impact (31.9%) is larger than R,’s impact
(20.7%), whereas on scaled data the two features display a similar impact. The results suggest
that the reduced vowel quality features are far more useful than full vowel quality features,
regardless of whether differences or ratios are used.



Table 6: Impact analysis for vowel quality features.

Unscaled Scaled
Input | Average Impact(%) Input | Average Impact(%)
R, 31.9 Ra 21.0
Rq 20.7 R, 19.9
F, 2.8 T 4.5
T 1.5 Fy 0.76
Fy 0.34 Fr 0.38

5 Conclusions and Future Work

The goal of this paper was to develop an approach to using GP for automatic rhythmic
stress detection in spoken NZ English. A range of prosodic and vowel quality features were
calculated, normalised and /or scaled from vowel segments in speech. The approach was tested
on 60 female adult utterances. A maximum average accuracy of 92.61% was achieved by our
GP system.

The results strongly support the use of GP to construct a more effective automatic rhyth-
mic stress detector than DT and SVM. Furthermore, according to our data set, GP is more
robust at handling large numbers of unnecessary features and maintaining high performance
than DT and SVM. GP also has a stronger automatic feature selection ability than DT and
SVM.

In addition, prosodic features appear to be more accurate in detecting stress than vowel
quality features, duration features being specially identified as the most important features.
If using vowel quality, reduced vowel quality features are more useful than full vowel quality
features.

In future work, we will further analyse the GP programs to understand the specific rela-
tionship amongst the feature terminals and the perceived stressed and unstressed vowels in
order to determine whether the generated GP program with /without adapting can be applied
to any other kind of data sets. We are also planning to investigate the possibility of having
GP automatically perform higher level normalisations of the prosodic features and calculate
vowel quality features directly from acoustic likelihoods in order to erase the limitation of
the manual pre-process of the features.
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