Abstract
In this paper, we present a novel approach to genetic learning of high-level visual concepts that works with sets of attributed visual primitives rather than with raster images. The paper presents the approach in detail and verifies it in an experiment concerning locating objects in real-world 3D scenes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bhanu, B., Lin, Y., Krawiec, K.: Evolutionary Synthesis of Pattern Recognition Systems. Springer, Heidelberg (2005)
Gabor, D.: Theory of Communication. J. Inst. of Electrical Engineers 93, 429–457 (1946)
Johnson, M.P., Maes, P., Darrell, T.: Evolving visual routines. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV: Proceedings of the fourth international workshop on the synthesis and simulation of living systems, pp. 373–390. MIT Press, Cambridge (1994)
Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.A.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufman, San Francisco (1999)
Krawiec, K., Bhanu, B.: Visual Learning by Coevolutionary Feature Synthesis. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 35, 409–425 (2005)
Luke, S.: ECJ Evolutionary Computation System (2002), http://www.cs.umd.edu/projects/plus/ec/ecj/
Maloof, M.A., Langley, P., Binford, T.O., Nevatia, R., Sage, S.: Improved rooftop detection in aerial images with machine learning. Machine Learning 53, 157–191 (2003)
Marek, A., Smart, W.D., Martin, M.C.: Learning Visual Feature Detectors for Obstacle Avoidance using Genetic Programming. In: Late Breaking Papers at the Genetic and Evolutionary Computation Conference (GECCO 2002), New York, pp. 330–336 (2002)
Marr, D.: Vision. W.H. Freeman, San Francisco (1982)
Rizki, M., Zmuda, M., Tamburino, L.: Evolving pattern recognition systems. IEEE Transactions on Evolutionary Computation 6, 594–609 (2002)
Song, A., Ciesielski, V.: Fast texture segmentation using genetic programming. In: Sarker, R., et al. (eds.) Proceedings of the 2003 Congress on Evolutionary Computation CEC 2003, pp. 2126–2133. IEEE Press, Canberra (2003)
Sun Microsystems Inc.: Java Advanced Imaging API Specification. Version 1.2 (2001)
Teller, A., Veloso, M.M.: PADO: A new learning architecture for object recognition. In: Ikeuchi, K., Veloso, M. (eds.) Symbolic Visual Learning, pp. 77–112. Oxford Press, New York (1997)
Torralba, A., Murphy, K.M., Freeman, W.T.: MIT-CSAIL Computer vision annotated image library (2004), http://web.mit.edu/torralba/www/database.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krawiec, K. (2006). Learning High-Level Visual Concepts Using Attributed Primitives and Genetic Programming. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_48
Download citation
DOI: https://doi.org/10.1007/11732242_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33237-4
Online ISBN: 978-3-540-33238-1
eBook Packages: Computer ScienceComputer Science (R0)