Abstract
The unsupervised clustering analysis of data from temporal or dose-response experiments is one of the most important and challenging tasks of microarray data anlysis. Here we present an extension of CAGED (Cluster Analysis of Gene Expression Dynamics, one of the most commonly used programs) to identify similar gene expression patterns measured in either short time-course or dose-response microarray experiments. Compared to the initial version of CAGED, in which gene expression temporal profiles are modeled by autoregressive equations, this new method uses polynomial models to incorporate time/dosage information into the model, and objective priors to include information about background noise in gene expression data. In its current formulation, CAGED results may change according to the parametrization. In this new formulation, we make the results invariant to reparametrization by using proper prior distributions on the model parameters. We compare the results obtained by our approach with those generated by STEM to show that our method can identify the correct number of clusters and allocate gene expression profiles to the correct clusters in simulated data, and produce more meaningful Gene Ontology enriched clusters in data from real microarray experiments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, New York (1994)
Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)
Ernst, J., Nau, G.J., Bar-Joseph, Z.: Clustering short time series gene expression data. Bioinformatics, 21 Suppl 21(Suppl. 1), i159–i168 (2005)
Guillemin, K., Salama, N., Tompkins, L., Falkow, S.: Cag pathogenicity island-specific response of gastric epithelial cells to helicobacter pylori infection. Proc. Natl. Acad. Sci. USA 99(23), 15136–15141 (2002)
Gunderson, K.L., Kruglyak, S., Graigeand, M.S., Garcia, F., Kermani, B.G., Zhao, C., Che, D., Dickinson, T., Wickham, E., Bierle, J., Doucet, D., Milewski, M., Yang, R., Siegmund, C., Haas, J., Zhou, L., Oliphant Ad, A., Fan, J., Barnard, S., Chee, M.S.: Decoding randomly ordered DNA arrays. Genome Res. 14, 870–877 (2004)
Hosack, D.A., Dennis Jr., G., Sherman, B.T., Clifford Lane, H., Lempicki, R.A.: Identifying biological themes within lists of genes with EASE. Genome Biology 4(6), 4 (2003)
Kass, R.E., Raftery, A.: Bayes factors. J. Ameri. Statist. Assoc. 90, 773–795 (1995)
Ramoni, M., Sebastiani, P., Cohen, P.R.: Bayesian clustering by dynamics. Mach. Learn. 47(1), 91–121 (2002)
Ramoni, M., Sebastiani, P., Kohane, I.S.: Cluster analysis of gene expression dynamics. Proc. Natl. Acad. Sci. USA 99(14), 9121–9126 (2002)
Sebastiani, P., Gussoni, E., Kohane, I.S., Ramoni, M.: Statistical challenges in functional genomics (with discussion). Statist. Sci. 18, 33–70 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, L., Ramoni, M., Sebastiani, P. (2006). Clustering Short Gene Expression Profiles. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_5
Download citation
DOI: https://doi.org/10.1007/11732990_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33295-4
Online ISBN: 978-3-540-33296-1
eBook Packages: Computer ScienceComputer Science (R0)