Abstract
Ever since the seminal paper by Imielinski and Mannila [11], inductive databases have been a constant theme in the data mining literature. Operationally, such an inductive database is a database in which models and patterns are first class citizens.
In the extensive literature on inductive databases there is at least one consequence of this operational definition that is conspicuously missing. That is the question: if we have models and patterns in our inductive database, how does this help to discover other models and patterns? This question is the topic of this paper.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. ACM SIGMOD conference, pp. 207–216 (1993)
Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence databases. In: Lomet, D. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)
Asperti, A., Longo, G.: Categories, Types, and Structures. MIT Press, Cambridge (1991)
Bathoorn, R., Siebes, A.: Discovering (almost) phylogentic trees from developmental sequences data. In Knowledge Discovery in Databases. In: PKDD 2004. Lecture Notes in AI, vol. 3202 (2004)
Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Rastogi, R., Morik, K., Bramer, M., Wu, X. (eds.) Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM 2004), pp. 35–42 (2004)
Boulicaut, J.-F., Bykowski, A.: Frequent closures as a concise representation for binary data mining. In: Knowledge Discovery and Data Mining, Current Issues and New Applications, 4th Pacific-Asia Conference, PADKK 2000, pp. 62–73 (2000)
Castelo, R., Feelders, A., Siebes, A.: Mambo: Discovering association rules based on conditional independencies. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA 2001. LNCS, vol. 2189, pp. 289–298. Springer, Heidelberg (2001)
Hand, D.J.: Pattern detection and discovery. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 1–12. Springer, Heidelberg (2002)
Hollmén, J., Seppanen, J.K., Mannila, H.: Mixture models and frequent sets: Combining global and local methods for 0-1 data. In: Proc. SIAM Conference on Data Mining (SDM) 2003 (2003)
Maynard-Reid II, P., Chajewska, U.: Aggregating learned probabilistic beliefs. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp. 354–361. Morgan Kaufmann, San Francisco (2001)
Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Communications of the ACM 39(11), 58–64 (1996)
Jaynes, E.T.: Probability Theory: The Logic of Science
Kargupta, H., Chan, P. (eds.): Advances in Distributed and Parallel Knowledge Discovery. MIT Press, Cambridge (2000)
Knobbe, A.J., de Haas, M., Siebes, A.: Propositionalisation and aggregates. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 277–288. Springer, Heidelberg (2001)
Kohane, I.S., Kho, A.T., Butte, A.J.: Microarrays for an Integrative Genomics. In: Computational Molecular Biology. MIT Press, Cambridge (2003)
Krogel, S., Rawles, F., Zelezny, P., Flach, N.: Comparative evaluation of approaches to propositionalization. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 194–217. Springer, Heidelberg (2003)
Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Chichester (2004)
Last, M., Kandel, A., Bunke, H. (eds.): Data Mining in Time Series Databases. World Scientific, Singapore (2004)
Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proc. of the ACM KDD conference, pp. 80–86 (1998)
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. 1, 259–289 (1997)
McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley Series in Probability and Statistics. John Wiley & Sons, Chichester (1997)
Morik, K., Boulicaut, J.-F., Siebes, A. (eds.): Local Pattern Detection. LNCS (LNAI), vol. 3539. Springer, Heidelberg (2005)
Naqvi, S., Tsur, S.: A Logical Language for Data and Knowledge Bases. Computer Science Press (1989)
Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, Englewood Cliffs (2003)
Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proc. ACM SIGMOD conference (1998)
Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proceedings of 1998 ACM SIGMOD International Conference Management of Data, pp. 13–24 (1998)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)
Pavlov, D., Mannila, H., Smyth, P.: Beyond independence: Probabilistic models for query approximation on binary transaction data. Technical Report UCI-ICS TR-01-09, UC Irvine (2001)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1997)
De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2), 69–77 (2000)
De Raedt, L., Kersting, K.: Probabilistic logic learning. SIGKDD Explorations 5(1), 31–48 (2003)
Rue, H., Held, L.: Gaussian Markov Random Fields. Monographs on Statistics and Applied Probablity, vol. 104. Chapman and Hall, Boca Raton (2005)
Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics and its Applications, vol. 24. Oxford University Press, Oxford (2003)
Shaw-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Siebes, A., Vreeken, J., van Leeuwen, M.: Leeuwen Item sets that compress. In: Proceedings of the SIAM conference on Data Mining (SDM) (2006)
Struzik, Z., Siebes, A.: The haar wavelet transform in the time series similarity paradigm. In: Zytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 12–22. Springer, Heidelberg (1999)
Valentini, G., Masulli, F.: Ensembles of learning machines. In: Marinaro, M., Tagliaferri, R. (eds.) WIRN 2002. LNCS, vol. 2486, pp. 3–22. Springer, Heidelberg (2002)
Weiss, S.M., Indurkhya, N., Zhang, T., Damerau, F.J.: Text Mining. Springer, Heidelberg (2005)
Zaiane, O.R., Simoff, S., Djeraba, C.: MDM/KDD 2002 and KDMCD 2002. LNCS (LNAI), vol. 2797. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Siebes, A. (2006). Data Mining in Inductive Databases. In: Bonchi, F., Boulicaut, JF. (eds) Knowledge Discovery in Inductive Databases. KDID 2005. Lecture Notes in Computer Science, vol 3933. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11733492_1
Download citation
DOI: https://doi.org/10.1007/11733492_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33292-3
Online ISBN: 978-3-540-33293-0
eBook Packages: Computer ScienceComputer Science (R0)