Skip to main content

Exploiting Virtual Patterns for Automatically Pruning the Search Space

  • Conference paper
Knowledge Discovery in Inductive Databases (KDID 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3933))

Included in the following conference series:

  • 411 Accesses

Abstract

A lot of works address the mining of patterns under constraints. The search space is reduced by taking advantage of pruning conditions on patterns, typically by using anti-monotone and monotone properties. In this paper, we introduce two virtual patterns in order to automatically deduce pruning conditions from any constraint coming from the primitive-based framework which gathers a large set of varied constraints. These virtual patterns enable us to provide negative and positive pruning conditions according to the generalization and the specialization of patterns. We show that these pruning conditions are monotone or anti-monotone and can be pushed into usual constraint mining algorithms. Experiments carried on several contexts show that our proposals improve the mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.L.P. (eds.) ICDE, pp. 3–14. IEEE Computer Society, Los Alamitos (1995)

    Google Scholar 

  3. Bayardo, R.J.: The hows, whys, and whens of constraints in itemset and rule discovery. In: Proceedings of the Workshop on Inductive Databases and Constraint Based Mining (2005)

    Google Scholar 

  4. Besson, J., Pensa, R., Robardet, C., Boulicaut, J.-F.: Constraint-based mining of fault-tolerant patterns from boolean data. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 55–71. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) SIGMOD Conference, pp. 359–370. ACM Press, New York (1999)

    Google Scholar 

  6. Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: Exante: Anticipated data reduction in constrained pattern mining. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS, vol. 2838, pp. 59–70. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: ICDM, pp. 35–42. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  8. Bonchi, F., Lucchese, C.: Pushing tougher constraints in frequent pattern mining. In: Ho, et al. (eds.) [14], pp. 114–124

    Google Scholar 

  9. Bucila, C., Gehrke, J., Kifer, D., White, W.M.: Dualminer: a dual-pruning algorithm for itemsets with constraints. In: KDD, pp. 42–51. ACM, New York (2002)

    Google Scholar 

  10. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 1999), pp. 43–52. ACM Press, New York (1999)

    Chapter  Google Scholar 

  11. Gade, K., Wang, J., Karypis, G.: Efficient closed pattern mining in the presence of tough block constraints. In: Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (eds.) KDD, pp. 138–147. ACM, New York (2004)

    Google Scholar 

  12. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS, vol. 3245, pp. 278–289. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) SIGMOD Conference, pp. 1–12. ACM, New York (2000)

    Google Scholar 

  14. Ho, T.-B., Cheung, D., Liu, H. (eds.): PAKDD 2005. LNCS, vol. 3518. Springer, Heidelberg (2005)

    Google Scholar 

  15. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Commun. ACM 39(11), 58–64 (1996)

    Article  Google Scholar 

  16. Kifer, D., Gehrke, J., Bucila, C., White, W.M.: How to quickly find a witness. In: PODS, pp. 272–283. ACM, New York (2003)

    Google Scholar 

  17. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) ICDM, pp. 313–320. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  18. Lee, S.D., Raedt, L.D.: An algebra for inductive query evaluation. In: Proceedings of the Second International Workshop on Inductive Databases (KDID 2003), Rudjer Boskovic Institute, Zagreb, Croatia, pp. 80–96 (September 2003)

    Google Scholar 

  19. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997)

    Article  Google Scholar 

  20. Mitchell, T.M.: Generalization as search. Artif. Intell. 18(2), 203–226 (1982)

    Article  MathSciNet  Google Scholar 

  21. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained association rules. In: Haas, L.M., Tiwary, A. (eds.) SIGMOD Conference, pp. 13–24. ACM Press, New York (1998)

    Google Scholar 

  22. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999, vol. 1540, pp. 398–416. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent item sets with convertible constraints. In: ICDE, pp. 433–442. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  24. Soulet, A., Crémilleux, B.: An efficient framework for mining flexible constraints. In: Ho, et al. (eds.) [14], pp. 661–671

    Google Scholar 

  25. Soulet, A., Crémilleux, B.: Optimizing constraint-based mining by automatically relaxing constraints. In: Proceedings of The Fifth IEEE International Conference on Data Mining (ICDM 2005) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soulet, A., Crémilleux, B. (2006). Exploiting Virtual Patterns for Automatically Pruning the Search Space. In: Bonchi, F., Boulicaut, JF. (eds) Knowledge Discovery in Inductive Databases. KDID 2005. Lecture Notes in Computer Science, vol 3933. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11733492_12

Download citation

  • DOI: https://doi.org/10.1007/11733492_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33292-3

  • Online ISBN: 978-3-540-33293-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics