Abstract
A lot of works address the mining of patterns under constraints. The search space is reduced by taking advantage of pruning conditions on patterns, typically by using anti-monotone and monotone properties. In this paper, we introduce two virtual patterns in order to automatically deduce pruning conditions from any constraint coming from the primitive-based framework which gathers a large set of varied constraints. These virtual patterns enable us to provide negative and positive pruning conditions according to the generalization and the specialization of patterns. We show that these pruning conditions are monotone or anti-monotone and can be pushed into usual constraint mining algorithms. Experiments carried on several contexts show that our proposals improve the mining.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499. Morgan Kaufmann, San Francisco (1994)
Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.L.P. (eds.) ICDE, pp. 3–14. IEEE Computer Society, Los Alamitos (1995)
Bayardo, R.J.: The hows, whys, and whens of constraints in itemset and rule discovery. In: Proceedings of the Workshop on Inductive Databases and Constraint Based Mining (2005)
Besson, J., Pensa, R., Robardet, C., Boulicaut, J.-F.: Constraint-based mining of fault-tolerant patterns from boolean data. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 55–71. Springer, Heidelberg (2006)
Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) SIGMOD Conference, pp. 359–370. ACM Press, New York (1999)
Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: Exante: Anticipated data reduction in constrained pattern mining. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS, vol. 2838, pp. 59–70. Springer, Heidelberg (2003)
Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: ICDM, pp. 35–42. IEEE Computer Society, Los Alamitos (2004)
Bonchi, F., Lucchese, C.: Pushing tougher constraints in frequent pattern mining. In: Ho, et al. (eds.) [14], pp. 114–124
Bucila, C., Gehrke, J., Kifer, D., White, W.M.: Dualminer: a dual-pruning algorithm for itemsets with constraints. In: KDD, pp. 42–51. ACM, New York (2002)
Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 1999), pp. 43–52. ACM Press, New York (1999)
Gade, K., Wang, J., Karypis, G.: Efficient closed pattern mining in the presence of tough block constraints. In: Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (eds.) KDD, pp. 138–147. ACM, New York (2004)
Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS, vol. 3245, pp. 278–289. Springer, Heidelberg (2004)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) SIGMOD Conference, pp. 1–12. ACM, New York (2000)
Ho, T.-B., Cheung, D., Liu, H. (eds.): PAKDD 2005. LNCS, vol. 3518. Springer, Heidelberg (2005)
Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Commun. ACM 39(11), 58–64 (1996)
Kifer, D., Gehrke, J., Bucila, C., White, W.M.: How to quickly find a witness. In: PODS, pp. 272–283. ACM, New York (2003)
Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) ICDM, pp. 313–320. IEEE Computer Society, Los Alamitos (2001)
Lee, S.D., Raedt, L.D.: An algebra for inductive query evaluation. In: Proceedings of the Second International Workshop on Inductive Databases (KDID 2003), Rudjer Boskovic Institute, Zagreb, Croatia, pp. 80–96 (September 2003)
Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997)
Mitchell, T.M.: Generalization as search. Artif. Intell. 18(2), 203–226 (1982)
Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained association rules. In: Haas, L.M., Tiwary, A. (eds.) SIGMOD Conference, pp. 13–24. ACM Press, New York (1998)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999, vol. 1540, pp. 398–416. Springer, Heidelberg (1999)
Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent item sets with convertible constraints. In: ICDE, pp. 433–442. IEEE Computer Society, Los Alamitos (2001)
Soulet, A., Crémilleux, B.: An efficient framework for mining flexible constraints. In: Ho, et al. (eds.) [14], pp. 661–671
Soulet, A., Crémilleux, B.: Optimizing constraint-based mining by automatically relaxing constraints. In: Proceedings of The Fifth IEEE International Conference on Data Mining (ICDM 2005) (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Soulet, A., Crémilleux, B. (2006). Exploiting Virtual Patterns for Automatically Pruning the Search Space. In: Bonchi, F., Boulicaut, JF. (eds) Knowledge Discovery in Inductive Databases. KDID 2005. Lecture Notes in Computer Science, vol 3933. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11733492_12
Download citation
DOI: https://doi.org/10.1007/11733492_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33292-3
Online ISBN: 978-3-540-33293-0
eBook Packages: Computer ScienceComputer Science (R0)