Abstract
One of the key tasks in intelligence and security informatics (ISI) is to find anomalies and exceptions from typically voluminous datasets and observations [1-4]. For example, in the context of societal security, finding “exceptions” may involve discovering irregular behaviors in a community where it is assumed that most people behave normally.
Similar content being viewed by others
References
Chen, H., Wang, F.Y.: Artificial Intelligence for Homeland Security. IEEE Intelligent Systems, pp. 12-16 (2005)
Chen, H., Wang, F.Y., Zeng, D.: Intelligence and Security informatics for Homeland Security: Information, Communication and Transportation. IEEE Trans. Intelligent Transportation Systems, pp. 329-341 (2004)
Kantor, P., Muresan, G., Roberts, F., Zeng, D., Wang, F.Y., Chen, H., Merkle, R.C.: Intelligence and Security Informatics. In: Proceedings IEEE Conference on Intelligence and Security informatics, Atlanta, GA,USA (May 2005)
Yao, Y.Y., Wang, F.Y., Wang, J., Zeng, D.: Rule + Exception Strategies for Security Information Analysis. IEEE Intelligent Systems, 52–57 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, J., Wang, FY., Zeng, D.D. (2006). Rule+Exception Learning-Based Class Specification and Labeling in Intelligence and Security Analysis. In: Chen, H., Wang, FY., Yang, C.C., Zeng, D., Chau, M., Chang, K. (eds) Intelligence and Security Informatics. WISI 2006. Lecture Notes in Computer Science, vol 3917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11734628_32
Download citation
DOI: https://doi.org/10.1007/11734628_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33361-6
Online ISBN: 978-3-540-33362-3
eBook Packages: Computer ScienceComputer Science (R0)