Skip to main content

An Efficient Static Blind Ring Signature Scheme

  • Conference paper
Information Security and Cryptology - ICISC 2005 (ICISC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3935))

Included in the following conference series:

  • 1595 Accesses

Abstract

Blind group/ring signatures are useful for applications such as e-cash and e-voting systems. In this paper, we show that the blindness of some existing blind group/ring signature schemes is easy to break by a malicious anonymous signer of dynamic groups. However, this risk has not been pointed out in these proposals, which may cause misuse of the schemes. Fortunately, for static groups, it is possible to integrate the blindness of message into group/ring signatures. An efficient static blind ring signature is proposed with its security provable under the extended ROS assumptions in the random oracle model plus the generic group model. After the group public key is generated, the space, time, and communication complexities of the relevant parameters and operations are constant.

This work is supported by ARC Discovery Grant DP0557493 and the National Natural Science Foundation of China (No. 60403007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Abe, M., Ohkubo, M., Suzuki, K.: 1-out -of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Baric, N., Pfitzman, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)

    Google Scholar 

  5. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Chan, T.K., Fung, K., Liu, J.K., Wei, V.K.: Blind Spontaneous Anonymous Group Signatures for Ad Hoc Groups. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004. LNCS, vol. 3313, pp. 82–94. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Chan, A., Frankel, Y., Tsiounis, Y.: Easy Come - Easy Go Divisible Cash. Updated version with corrections, GTE Tech. Rep. (1998), available at: http://www.ccs.neu.edu/home/yiannis/

  8. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  9. Chaum, D.: Blind signatures for untraceable payments. In: Proc. Crypto 1982, pp. 199–203. Plenum Press, New York (1983)

    Google Scholar 

  10. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient Blind Signatures Without Random Oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Camenisch, J., Stadler, M.: Efficient group signatures for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 465–479. Springer, Heidelberg (1997)

    Google Scholar 

  13. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous Identification in Ad Hoc Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Hastad, J., Schrift, A.W., Shamir, A.: The discrete logarithm modulo a composite hides O(n) bits. JCSS: Journal of Computer and System Sciences 47(3), 376–404 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004), http://eprint.iacr.org/2004/007.pdf

    Chapter  Google Scholar 

  16. Lysyanskaya, A., Ramzan, Z.: Group Blind Digital Signatures: A Scalable Solution to Electronic Cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55, 165–172 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nguyen, K.Q., Mu, Y., Varadharajan, V.: Divertible Zero-Knowledge Proof of Polynomial Relations and Blind Group Signature. In: Pieprzyk, J.P., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587, pp. 117–128. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)

    Article  MATH  Google Scholar 

  21. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Google Scholar 

  24. Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Wagner, D.: A Generalized Birthday Problem (Extended Abstract). In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Wu, Q., Chen, X., Wang, C., Wang, Y.: Shared-Key Signature and Its Application to Anonymous Authentication in Ad Hoc Group. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 330–341. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Zhang, F., Kim, K.: ID-Based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Q., Zhang, F., Susilo, W., Mu, Y. (2006). An Efficient Static Blind Ring Signature Scheme. In: Won, D.H., Kim, S. (eds) Information Security and Cryptology - ICISC 2005. ICISC 2005. Lecture Notes in Computer Science, vol 3935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11734727_32

Download citation

  • DOI: https://doi.org/10.1007/11734727_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33354-8

  • Online ISBN: 978-3-540-33355-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics