Skip to main content

Lexical Entailment for Information Retrieval

  • Conference paper
Advances in Information Retrieval (ECIR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3936))

Included in the following conference series:

Abstract

Textual Entailment has recently been proposed as an application independent task of recognising whether the meaning of one text may be inferred from another. This is potentially a key task in many NLP applications. In this contribution, we investigate the use of various lexical entailment models in Information Retrieval, using the language modelling framework. We show that lexical entailment potentially provides a significant boost in performance, similar to pseudo-relevance feedback, but at a lower computational cost. In addition, we show that the performance is relatively stable with respect to the corpus the lexical entailment measure is estimated on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://trec.nist.gov/trec_eval/

  2. http://www.lemurproject.org/

  3. Berger, A.L., Lafferty, J.D.: Information retrieval as statistical translation. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 222–229. ACM, New York (1999)

    Google Scholar 

  4. Besançon, R., Rajman, M., Chappelier, J.-C.: Textual similarities based on a distributional approach. In: Proceedings of the Tenth International Workshop on Database and Expert Systems Applications (DEX 1999), Florence, Italy (1999)

    Google Scholar 

  5. Colin, B.: Information et analyse des données. Pub. Inst. Stat. Univ. Paris XXXVII(3–4), 43–60 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Croft, W., Lafferty, J. (eds.): Language Modeling for Information Retrieval. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  7. Dagan, I., Glickman, O., Magnini, B.: The PASCAL recognising textual entailment challenge. In: PASCAL Challenges Workshop for Recognizing Textual Entailment (2005)

    Google Scholar 

  8. Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Computational Linguistics 19(1), 61–74 (1993)

    Google Scholar 

  9. Forman, G.: An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research 3, 1289–1305 (2003)

    MATH  Google Scholar 

  10. Gaussier, É., Renders, J.-M., Matveeva, I., Goutte, C., Déjean, H.: A geometric view on bilingual lexicon extraction from comparable corpora. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, pp. 526–533 (2004)

    Google Scholar 

  11. Glickman, O., Dagan, I., Koppel, M.: A probabilistic classification approach for lexical textual entailment. In: Twentieth National Conference on Artificial Intelligence (AAAI 2005) (2005)

    Google Scholar 

  12. Grefenstette, G.: Explorations in Automatic Thesaurus Construction. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  13. Grossman, D.A., Frieder, O.: Information Retrieval, 2nd edn. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  14. Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods, 2nd edn. Wiley- Interscience, Chichester (1999)

    MATH  Google Scholar 

  15. Peters, C., Gonzalo, J., Braschler, M., Kluck, M. (eds.): CLEF 2003. LNCS, vol. 3237. Springer, Heidelberg (2004)

    Google Scholar 

  16. Ponte, J., Croft, W.: A language modelling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–281. ACM, New York (1998)

    Google Scholar 

  17. Qiu, Y., Frei, H.: Improving the retrieval effectiveness by a similarity thesaurus. Technical report, Department of Computer Science, Swiss Federal Institute of Technology (1994)

    Google Scholar 

  18. Salton, G., McGill, J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)

    MATH  Google Scholar 

  19. Wong, S.K.M., Ziarko, W., Wong, P.C.N.: Generalized vector space model in information retrieval. In: Proceedings of the 8th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (1985)

    Google Scholar 

  20. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceedings of ICML 1997, 14th International Conference on Machine Learning, pp. 412–420 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clinchant, S., Goutte, C., Gaussier, E. (2006). Lexical Entailment for Information Retrieval. In: Lalmas, M., MacFarlane, A., Rüger, S., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds) Advances in Information Retrieval. ECIR 2006. Lecture Notes in Computer Science, vol 3936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11735106_20

Download citation

  • DOI: https://doi.org/10.1007/11735106_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33347-0

  • Online ISBN: 978-3-540-33348-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics