Abstract
Textual Entailment has recently been proposed as an application independent task of recognising whether the meaning of one text may be inferred from another. This is potentially a key task in many NLP applications. In this contribution, we investigate the use of various lexical entailment models in Information Retrieval, using the language modelling framework. We show that lexical entailment potentially provides a significant boost in performance, similar to pseudo-relevance feedback, but at a lower computational cost. In addition, we show that the performance is relatively stable with respect to the corpus the lexical entailment measure is estimated on.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berger, A.L., Lafferty, J.D.: Information retrieval as statistical translation. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 222–229. ACM, New York (1999)
Besançon, R., Rajman, M., Chappelier, J.-C.: Textual similarities based on a distributional approach. In: Proceedings of the Tenth International Workshop on Database and Expert Systems Applications (DEX 1999), Florence, Italy (1999)
Colin, B.: Information et analyse des données. Pub. Inst. Stat. Univ. Paris XXXVII(3–4), 43–60 (1993)
Croft, W., Lafferty, J. (eds.): Language Modeling for Information Retrieval. Kluwer Academic Publishers, Dordrecht (2003)
Dagan, I., Glickman, O., Magnini, B.: The PASCAL recognising textual entailment challenge. In: PASCAL Challenges Workshop for Recognizing Textual Entailment (2005)
Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Computational Linguistics 19(1), 61–74 (1993)
Forman, G.: An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research 3, 1289–1305 (2003)
Gaussier, É., Renders, J.-M., Matveeva, I., Goutte, C., Déjean, H.: A geometric view on bilingual lexicon extraction from comparable corpora. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, pp. 526–533 (2004)
Glickman, O., Dagan, I., Koppel, M.: A probabilistic classification approach for lexical textual entailment. In: Twentieth National Conference on Artificial Intelligence (AAAI 2005) (2005)
Grefenstette, G.: Explorations in Automatic Thesaurus Construction. Kluwer Academic Publishers, Dordrecht (1994)
Grossman, D.A., Frieder, O.: Information Retrieval, 2nd edn. Springer, Heidelberg (2004)
Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods, 2nd edn. Wiley- Interscience, Chichester (1999)
Peters, C., Gonzalo, J., Braschler, M., Kluck, M. (eds.): CLEF 2003. LNCS, vol. 3237. Springer, Heidelberg (2004)
Ponte, J., Croft, W.: A language modelling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–281. ACM, New York (1998)
Qiu, Y., Frei, H.: Improving the retrieval effectiveness by a similarity thesaurus. Technical report, Department of Computer Science, Swiss Federal Institute of Technology (1994)
Salton, G., McGill, J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)
Wong, S.K.M., Ziarko, W., Wong, P.C.N.: Generalized vector space model in information retrieval. In: Proceedings of the 8th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (1985)
Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceedings of ICML 1997, 14th International Conference on Machine Learning, pp. 412–420 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Clinchant, S., Goutte, C., Gaussier, E. (2006). Lexical Entailment for Information Retrieval. In: Lalmas, M., MacFarlane, A., Rüger, S., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds) Advances in Information Retrieval. ECIR 2006. Lecture Notes in Computer Science, vol 3936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11735106_20
Download citation
DOI: https://doi.org/10.1007/11735106_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33347-0
Online ISBN: 978-3-540-33348-7
eBook Packages: Computer ScienceComputer Science (R0)