Abstract
This paper addresses Textual Entailment (i.e. recognizing that the meaning of a text entails the meaning of another text) using a Tree Edit Distance algorithm between the syntactic trees of the two texts. A key aspect of the approach is the estimation of the cost for the editing operations (i.e. Insertion, Deletion, Substitution) among words.
The aim of the paper is to compare the contribution of two different lexical resources for recognizing textual entailment: WordNet and a word-similarity database. In both cases we derive entailment rules that are used by the Tree Edit Distance Algorithm. We carried out a number of experiments over the PASCAL-RTE dataset in order to estimate the contribution of different combinations of the available resources.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bayer, S., Burger, J., Ferro, L., Henderson, J., Yeh, A.: MITRE’s Submissions to the EU Pascal RTE Challenge. In: Proceedings of PASCAL Workshop on Recognizing Textual Entailment, Southampton, UK (2005)
Budanitsky, A., Hirst, G.: Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures. In: Workshop on WordNet and other Lexical Resources, Second meeting of the Nord American Chapter of the Association for Computational Linguistics, Pittsburgh (2001)
Dagan, I., Glickman, O.: Generic applied modeling of language variability. In: Proceedings of PASCAL Workshop on Learning Methods for Text Understanding and Mining, Grenoble (2004)
Dagan, I., Glickman, O., Magnini, B.: The PASCAL Recognizing Textual Entailment Challenge. In: Proceedings of PASCAL Workshop on Recognizing Textual Entailment, Southampton, UK (2005)
Fellbaum, C.: WordNet, an electronic lexical database. MIT Press, Cambridge (1998)
Harabagiu, S., Miller, G., Moldovan, D.: WordNet 2 - A morphologically and Semantically Enhanced Resource. In: Proceeding of ACL-SIGLEX 1999, Marylend (1999)
Herrera, J., Peñas, A., Verdejo, F.: Textual Entailment Recognition Based on Dependency Analysis and WordNet. In: Proceedings of PASCAL Workshop on Recognizing Textual Entailment, Southampton, UK (2005)
Jijkoun, V., de Rijke, M.: Recognizing Textual Entailment Using Lexical Similarity. In: Proceedings of PASCAL Workshop on Recognizing Textual Entailment Southampton, UK (2005)
Lin, D.: Dependency-based evaluation of MINIPAR. In: Proceedings of the Workshop on Evaluation of Parsing Systems at LREC 1998, Granada, Spain (1998)
Lin, D.: An Information-Theoretic Definition of Similarity. In: Proceedings of International Conference on Machine Learning, Madison, Wisconsin (July 1998)
Lin, D., Pantel, P.: Discovery of inference rules for Question Answering. Natural Language Engineering 7(4), 343–360 (2001)
Moldovan, D., Rus, V.: Logic Form Transformation and it’s Applicability in Question Answering. In: Proceedings of ACL 2001 (2001)
Moldovan, D., Harabagio, S., Girju, R., Morarescu, P., Lacatsu, F., Novischi, A.: A LCC Tools for Question Answering. In: NIST Special Publication: SP 500-251 The Eleventh Text Retrieval Conference (TREC 2002-2003)
Monz, C., de Rijke, M.: Light-Weight Entailment Checking for Computational Semantics. In: The third workshop on inference in computational semantics (ICoS-3) (2001)
Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet:Similarity- Measuring the relatedness of concepts. In: AAAI 2004 (2004)
Punyakanok, V., Roth, D., Yih, W.-t.: Mapping Dependencies Trees: An Application to Question Answering. In: Proceedings of AI & Math (2004)
Raina, R., Haghighi, A., Cox, C., Finkel, J., Michels, J., Toutanova Bill MacCartney, K., de Marneffe, M.-C., Manning, C.D., Ng, A.Y.: Robust Textual Inference using Diverse Knowledge Sources. In: Proceedings of PASCAL Workshop on Recognizing Textual Entailment, Southampton, UK (2005)
Ratnaparkhi, A.: A Maximum Entropy Part-Of-Speech Tagger. In: Proceeding of the Empirical Methods in Natural Language Processing Conference, May 17-18 (1996)
Szpektor, I., Tanev, H., Dagan, I., Coppola, B.: Scaling Web-based Acquisition of Entailment Relations. In: Proceedings of EMNLP 2004 – Empirical Methods in Natural Language Processing, Barcelona (July 2004)
Zhang, K., Shasha, D.: Fast algorithm for the unit cost editing distance between trees. Journal of Algorithms 11, 1245–1262 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kouylekov, M., Magnini, B. (2006). Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds) Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment. MLCW 2005. Lecture Notes in Computer Science(), vol 3944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11736790_12
Download citation
DOI: https://doi.org/10.1007/11736790_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33427-9
Online ISBN: 978-3-540-33428-6
eBook Packages: Computer ScienceComputer Science (R0)