Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3944))

Included in the following conference series:

  • 2446 Accesses

Abstract

We describe an approach to regression based on building a probabilistic model with the aid of visualization. The “stereopsis” data set in the predictive uncertainty challenge is used as a case study, for which we constructed a mixture of neural network experts model. We describe both the ideal Bayesian approach and computational shortcuts required to obtain timely results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sinz, F.H., Candela, J.Q., Bakır, G.H., Rasmussen, C.E., Franz, M.O.: Learning depth from stereo. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 245–252. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. Neural Computation 6, 181–214 (1994)

    Article  Google Scholar 

  3. Neal, R.M.: Bayesian Learning for Neural Networks. Lecture Notes in Statistics, vol. 118. Springer, New York (1996)

    MATH  Google Scholar 

  4. Neal, R.M.: Flexible Bayesian modeling software (FBM)(2003), Available through http://www.cs.toronto.edu/~radford/

  5. Neal, R.M.: Probabilistic inference using Markov chain Monte Carlo methods. Technical report. Dept. of Computer Science, University of Toronto (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murray, I., Snelson, E. (2006). A Pragmatic Bayesian Approach to Predictive Uncertainty. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds) Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment. MLCW 2005. Lecture Notes in Computer Science(), vol 3944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11736790_3

Download citation

  • DOI: https://doi.org/10.1007/11736790_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33427-9

  • Online ISBN: 978-3-540-33428-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics