Abstract
We describe an approach to regression based on building a probabilistic model with the aid of visualization. The “stereopsis” data set in the predictive uncertainty challenge is used as a case study, for which we constructed a mixture of neural network experts model. We describe both the ideal Bayesian approach and computational shortcuts required to obtain timely results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sinz, F.H., Candela, J.Q., Bakır, G.H., Rasmussen, C.E., Franz, M.O.: Learning depth from stereo. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 245–252. Springer, Heidelberg (2004)
Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. Neural Computation 6, 181–214 (1994)
Neal, R.M.: Bayesian Learning for Neural Networks. Lecture Notes in Statistics, vol. 118. Springer, New York (1996)
Neal, R.M.: Flexible Bayesian modeling software (FBM)(2003), Available through http://www.cs.toronto.edu/~radford/
Neal, R.M.: Probabilistic inference using Markov chain Monte Carlo methods. Technical report. Dept. of Computer Science, University of Toronto (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Murray, I., Snelson, E. (2006). A Pragmatic Bayesian Approach to Predictive Uncertainty. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds) Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment. MLCW 2005. Lecture Notes in Computer Science(), vol 3944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11736790_3
Download citation
DOI: https://doi.org/10.1007/11736790_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33427-9
Online ISBN: 978-3-540-33428-6
eBook Packages: Computer ScienceComputer Science (R0)