Abstract
The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide details of the datasets, algorithms used by the teams, evaluation criteria, and results achieved.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1475–1490 (2004)
Barker, M., Rayens, W.: Partial least squares for discrimination. Journal of Chemometrics 17, 166–173 (2003)
Barnard, K., Duygulu, P., Forsyth, D., Freitas, N., Blei, D., Jordan, M.I.: Matching words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 109–122. Springer, Heidelberg (2002)
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm
Chapelle, O., Haffner, P., Vapnik, V.: Support vector machines for histogrambased image classification. IEEE Transactions on Neural Networks 10(5), 1055–1064 (1999)
Comaniciu, D., Meer, P.: Distribution free decomposition of multivariate data. Pattern Analysis and Applications 2, 22–30 (1999)
Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: Proceedings of the 8th IEEE International Conference on Computer Vision, Vancouver, Canada, July 2001, vol. 1, pp. 438–445 (2001)
Csurka, G., Dance, C., Fan, L., Williamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV 2004 Workshop on Statistical Learning in Computer Vision, pp. 59–74 (2004)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005, pp. 886–893 (2005)
Deselaers, T., Keysers, D., Ney, H.: Discriminative training for object recognition using image patches. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005, vol. 2, pp. 157–162 (2005)
Deselaers, T., Keysers, D., Ney, H.: Improving a discriminative approach to object recognition using image patches. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 326–333. Springer, Heidelberg (2005)
Dorko, G., Schmid, C.: Selection of scale-invariant parts for object class recognition. In: Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, France, October 2003, pp. 634–640 (2003)
Dorkó, G., Schmid, C.: Object class recognition using discriminative local features. Technical report, INRIA (February 2005)
Eichhorn, J., Chapelle, O.: Object categorization with SVM: kernels for local features. Technical report, Max Planck Institute for Biological Cybernetics (July 2004)
Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: Proceedings of the Workshop on Generative-Model Based Vision, Washington, DC, USA (June 2004)
Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA (June 2003)
Fritz, M., Leibe, B., Caputo, B., Schiele, B.: Integrating representative and discriminant models for object category detection. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China (October 2005)
Garcia, C., Delakis, M.: Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11), 1408–1423 (2004)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)
Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, pp. 137–142. Springer, Heidelberg (1998)
Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. The MIT Press, Cambridge (1999)
Jurie, F., Triggs, W.: Creating efficient codebooks for visual recognition. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China (2005)
Kondor, R., Jebara, T.: A kernel between sets of vectors. In: Proceedings of the 20th International Conference on Machine Learning, Washingon, DC, USA (2003)
Laaksonen, J., Koskela, M., Oja, E.: PicSOM—Self-organizing image retrieval with MPEG-7 content descriptions. IEEE Transactions on Neural Networks, Special Issue on Intelligent Multimedia Processing 13(4), 841–853 (2002)
Larlus, D.: Creation de vocabulaires visuels efficaces pour la categorization d’images. Master’s thesis, Image Vision Robotic, INPG and UJF (June 2005)
Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: ECCV 2004 Workshop on Statistical Learning in Computer Vision, Prague, Czech Republic, May 2004, pp. 17–32 (2004)
Leibe, B., Schiele, B.: Scale invariant object categorization using a scale-adaptive mean-shift search. In: Proceedings of the 26th DAGM Annual Pattern Recognition Symposium, Tuebingen, Germany (August 2004)
Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA (June 2005)
Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 79–116 (1998)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Meng, H., Shawe-Taylor, J., Szedmak, S., Farquhar, J.R.D.: Support vector machine to synthesise kernels. In: Proceedings of the Sheffield Machine Learning Workshop, Sheffield, UK (2004)
Mettu, R.R., Plaxton, C.G.: The online median problem. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, p. 339. IEEE Computer Society, Los Alamitos (2000)
Mikolajczyk, K., Leibe, B., Schiele, B.: Local features for object class recognition. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China (October 2005)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, June 2003, vol. 2, pp. 257–263 (2003)
Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60, 63–86 (2004)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)
Opelt, A., Fussenegger, A., Pinz, A., Auer, P.: Weak hypotheses and boosting for generic object detection and recognition. In: Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic, vol. 2, pp. 71–84 (2004)
Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. The MIT Press, Cambridge (2002)
Seemann, E., Leibe, B., Mikolajczyk, K., Schiele, B.: An evaluation of local shape-based features for pedestrian detection. In: Proceedings of the 16th British Machine Vision Conference, Oxford, UK (2005)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: Proceedings of the 6th European Conference on Computer Vision, Dublin, Ireland, pp. 18–32 (2000)
Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: An in-depth study. Technical report, INRIA (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Everingham, M. et al. (2006). The 2005 PASCAL Visual Object Classes Challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds) Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment. MLCW 2005. Lecture Notes in Computer Science(), vol 3944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11736790_8
Download citation
DOI: https://doi.org/10.1007/11736790_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33427-9
Online ISBN: 978-3-540-33428-6
eBook Packages: Computer ScienceComputer Science (R0)