Abstract
In this paper, an ontology infrastucture for multimedia reasoning is presented, making it possible to combine low-level visual descriptors with domain specific knowledge and subsequently analyze multimedia content with a generic algorithm that makes use of this knowledge. More specifically, the ontology infrastructure consists of a domain-specific ontology, a visual descriptor ontology (VDO) and an upper ontology. In order to interpret a scene, a set of atom regions is generated by an initial segmentation and their descriptors are extracted. Considering all descriptors in association with the related prototype instances and relations, a genetic algorithm labels the atom regions. Finally, a constraint reasoning engine enables the final region merging and labelling into meaningful objects.
This research was partially supported by the European Commission under contract FP6-001765 aceMedia.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Manjunath, B., Ohm, J.R., Vasudevan, V., Yamada, A.: Color and texture descriptors. IEEE Trans. on Circuits and Systems for Video Technology, special issue on MPEG-7 11(6), 703–715 (2001)
Brunelli, R., Mich, O., Modena, C.: A survey on video indexing. Journal of Visual Communications and Image Representation 10, 78–112 (1999)
Staab, S., Studer, R.: Handbook on Ontologies. International Handbooks on Information Systems. Springer, Heidelberg (2004)
Schreiber, A.T., Dubbeldam, B., Wielemaker, J.: Ontology-based photo annotation. IEEE Intelligent Systems (2001)
Al-Khatib, W., Day, Y., Ghafoor, A., Berra, P.: Semantic modeling and knowledge representation in multimedia databases. IEEE Transactions on Knowledge and Data Engineering 11(1), 64–80 (1999)
Yoshitaka, A., Kishida, S., Hirakawa, M., Ichikawa, T.: Knowledge-assisted contentbased retrieval for multimedia databases. IEEE Multimedia 1(4), 12–21 (1994)
Alejandro Jaimes, B.T., Smith, J.R.: Proc. IEEE International Conference on Image and Video Retrieval, ICME 2003 (2003)
Jaimes, A., Smith, J.R.: Proc. IEEE International Conference on Multimedia and Expo, ICME 2003 (2003)
Benitez, A.B., Chang, S.F.: Proc. IEEE International Conference on Image and Video Retrieval, ICME 2002 (2002)
Tsechpenakis, G., Akrivas, G., Andreou, G., Stamou, G., Kollias, S.: Knowledge- Assisted Video Analysis and Object Detection. In: Proc. European Symposium on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems (Eunite 2002), Algarve, Portugal (2002)
Mezaris, V., Kompatsiaris, I., Boulgouris, N., Strintzis, M.: Real-time compresseddomain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans. on Circuits and Systems for Video Technology 14(5), 606–621 (2004)
Mezaris, V., Kompatsiaris, I., Strintzis, M.: A framework for the efficient segmentation of large-format color images. Proc. International Conference on Image Processing, vol. 1, pp. 761–764 (2002)
Tuan, J.C., Chang, T.S., Jen, C.W.: On the data reuse and memory bandwidth analysis for full-search block-matching VLSI architecture. IEEE Trans. on Circuits and Systems for Video Technology 12(1), 61–72 (2002)
Yu, T., Zhang, Y.: Retrieval of video clips using global motion information. Electronics Letters 37(14), 893–895 (2001)
Mitchell, M.: An introduction to Genetic Algorithms. MIT Press, Cambridge (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Simou, N. et al. (2006). An Ontology Infrastructure for Multimedia Reasoning. In: Atzori, L., Giusto, D.D., Leonardi, R., Pereira, F. (eds) Visual Content Processing and Representation. VLBV 2005. Lecture Notes in Computer Science, vol 3893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11738695_8
Download citation
DOI: https://doi.org/10.1007/11738695_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33578-8
Online ISBN: 978-3-540-33579-5
eBook Packages: Computer ScienceComputer Science (R0)