
Incorporating Knowledge of Secondary
Structures in a L-System-Based Encoding

for Protein Folding

Gabriela Ochoa1, Gabi Escuela1, and Natalio Krasnogor2

1 Department of Computer Science, Universidad Simon Bolivar,
Po. Box 89000, Caracas 1080-A, Venezuela

gabro@ldc.usb.ve, gabiescuela@netuno.net.ve
2 School of Computer Science and I.T., University of Nottingham,

NG81BB, Nottingham, UK
Natalio.Krasnogor@nottingham.ac.uk

Abstract. An encoding scheme for protein folding on lattice models,
inspired by parametric L-systems, was proposed. The encoding incorpo-
rates problem domain knowledge in the form of predesigned production
rules that capture commonly known secondary structures: α-helices and
β-sheets. The ability of this encoding to capture protein native con-
formations was tested using an evolutionary algorithm as the inference
procedure for discovering L-systems. Results confirmed the suitability
of the proposed representation. It appears that the occurrence of motifs
and sub-structures is an important component in protein folding, and
these sub-structures may be captured by a grammar-based encoding.
This line of research suggests novel and compact encoding schemes for
protein folding that may have practical implications in solving meaning-
ful problems in biotechnology such as structure prediction and protein
folding.

1 Introduction

Proteins are complex organic compounds made up of amino acids joined by
peptide bonds1; they are essential to the structure and function of all living
beings; and are amongst the most studied molecules in biochemistry. Proteins
fold naturally into unique 3-dimensional structures, known as their native state
or tertiary structure. The biological role of a protein will depend on this 3D
conformation which in turn is determined by its amino acid sequence (also known
as primary structure). Biochemists also distinguish secondary structures which
are highly patterned sub-structures – mainly α-helices and β-sheets – that are
locally defined, so there can be many secondary motifs present in a single protein
(see Figure 1).
1 An amino acid is any molecule that contains both amino and carboxylic acid func-

tional groups. A peptide bond is a chemical bond formed between two molecules
when the carboxyl group of one molecule reacts with the amino group of the other
molecule, releasing a molecule of water.

E. Talbi et al. (Eds.): EA 2005, LNCS 3871, pp. 247–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

248 G. Ochoa, G. Escuela, and N. Krasnogor

Fig. 1. A representation of the 3D structure of myoglobin, showing shaded α-helices

Genome projects are producing vast amounts of amino acid sequences, but
understanding the biological role of these proteins will require knowledge of their
structure. The problem of predicting the 3D conformation of a protein from its
linear sequence, is known as the protein structure prediction problem (PSP).
Although, biochemists use empirical techniques (e.g. magnetic resonance, and
X-ray crystallography) on protein crystals in order to infer their conformations,
these methods are costly and time consuming. Computational structure predic-
tion methods will provide valuable information for the large amount of sequences
whose structures will not be determined experimentally. Two classes of compu-
tational methods for the PSP are distinguished [1]. The first (e.g. threading and
comparative modelling) rely on detectable similarities between the modelled se-
quence and known structures. The second class of methods, de novo or ab initio
methods, predict the structure from sequence alone, without relying on similarity
at the fold level between the modelled sequence and any of the known structures.
Several heuristic search methods (e.g. monte-carlo methods, simulated annealing,
and evolutionary algorithms) have been applied for de novo structure prediction
[20, 4, 16, 11]. However, PSP is still an open problem and large instances are
difficult to solve. A possible cause hindering the scaling of these techniques, are
the current direct encodings used (see section 2.1). In the context of EAs ap-
plied to design, it has been argued that a generative or rule-based scheme, that
specifies how to construct the phenotype, as opposed to a direct encoding of the
phenotype; can achieve greater scalability through self-similar and hierarchical
structures [7, 2, 8]. Moreover, a generative encoding would be a more compact
representation of a solution. A first approach to a generative encoding for the
PSP was presented in [6], where non parametric L-systems were evolved to cap-
ture protein tertiary structures. This approach although promising, met only
partial success since the search process was slow and required many executions
of the algorithm to obtain a successful L-system. Here we improved those re-
sults with two extensions: first, we consider parametric L-systems, and secondly,
we incorporate knowledge about secondary structures in the form of predefined
rules.

Previous work on evolving L-systems both for capturing blood vessels on the
eye [9], and the growth process of trees [3], have had to rely on specific knowl-
edge of the problem domain in order to enhance the algorithms’ performance.
This knowledge was, in both cases, incorporated in the form of predesigned

Incorporating Knowledge of Secondary Structures 249

fixed rules. On the other hand, previous studies on protein folding simulations
with evolutionary algorithms, have used knowledge about secondary structure
in order to improve the algorithms’ behavior on large instances [13, 16, 10, 15].
Thus, the evidence gathered from previous research suggests that incorporating
domain knowledge in the form of predesigned rules that capture secondary sub-
structures, would enhance performance. In this paper we test this hypothesis and
compare results with the non parametric L-systems (without knowledge about
secondary structures) suggested in [6].

The next section will describe the model of folding used for the experiments
in this paper, the HP model. This model although simple still captures the
essential properties of protein folding. The currently used encodings for heuris-
tic approaches to PSP in the HP model (which are all direct encodings), are
also described. Thereafter, section 3 describes the formalism of L-systems. The
proposed encoding, and evolutionary algorithm used are described in section
4. Section 5 presents and discusses our results, and finally section 6 offers our
conclusions and hints for future work.

2 The HP Model

A major driving force in determining the tertiary structure of proteins is the
hydrophobic effect. The idea behind this effect is that, energetically, protein
folding is driven by two factors: hydrophobic(or “oily) groups “prefer” to “get
away” from water, and hydrophilic (or polar) groups “prefer” to “dissolve” in
water. Thus, the polypeptide chain folds such that the nonpolar amino acids
are “hidden” within the structure and the polar residues are exposed on the
outer surface. The HP model [5] captures this idea: only two types of monomers
are distinguished: hydrophobic (H), and polar or hydrophilic (P). The set of
valid protein structure conformations is the space of all self-avoiding paths
(on a selected lattice, e.g., square 2D, triangular, cubic, diamond, etc.), with
each amino acid located on a lattice bead. Hydrophobic units that are ad-
jacent in the lattice but non-adjacent in the sequence (also called non-local
H-H contacts) add a constant negative factor (generally =-1) and all other
interactions are ignored. The native state is thought to be the global energy
minimum.

Fig. 2. Native structure in the square 2D lattice for the primary sequence
HPHPPHHPHPPHPHHPPHPH. White boxes corresponds to H , and black to P
amino acids. The arrow indicates the starting point, and the dotted lines the non-local
H-H contacts.

250 G. Ochoa, G. Escuela, and N. Krasnogor

2.1 Problem Encoding

In the HP model, the structures can be represented by Cartesian coordinates,
internal coordinates or distance geometry. We consider here internal coordinates,
which can be absolute or relative. Under the absolute encoding, the structures
are represented by a list of absolute moves. In a 2D square lattice, for example, a
structure is encoded as a string in the alphabet {Up,Down,Left,Right}. When
using relative coordinates, each move is interpreted in terms of the previous one,
like in LOGO turtle graphics; a structure is encoded as a string in the alphabet
{Forward, TurnLeft, TurnRight}. Figure 2, shows the optimal folding of an
example protein, the structure is coded either as RDDLULDLDLUURULURRD

(absolute encoding) or RFRRLLRLRRFRLLRRFR (relative encoding). The
number of non-local H − H contacts is nine. That is, the folding energy is -9.

3 L-Systems

L-systems are a mathematical formalism proposed by the biologist Aristid Lin-
denmayer in 1968 as an axiomatic theory of biological development. More re-
cently, L-systems have found several applications in computer graphics [19, 18].
Two principal areas include generation of fractals and realistic modelling of
plants. Central to L-systems, is the notion of rewriting, where the basic idea
is to define complex objects by successively replacing parts of a simple object
using a set of rewriting rules or productions. The rewriting can be carried out
recursively.

The essential difference between traditional formal language grammars and
L-systems lies in the method of applying productions. In formal languages pro-
ductions are applied sequentially, whereas in L-systems they are applied in par-
allel, replacing simultaneously all letters in a given word. This difference reflects
the biological motivation of L-systems. Productions are intended to capture cell
divisions in multicellular organisms, where many division may occur at the same
time.

A formal definition of L-systems is as follows [18]: Let V denote an alphabet,
V ∗ the set of all words over V , and V + the set of all nonempty words over V . A
L−system is an ordered triplet G = 〈V, ω, P 〉, where V is the alphabet, ω ∈ V + is
a nonempty word called the axiom and P ⊂ V ×V ∗ is a finite set of productions.
If a pair (a, χ) is a production, we write a → χ. The letter a and the word χ
are called the predecessor and sucessor of this production respectively. It is
assumed that for any letter a ∈ V , there is at least one word χ ∈ V ∗ such that
a → χ. If no production is explicitly specified for a given predecessor a ∈ V , we
assume that the identity production a → a belongs to the set of productions P .

The derivation process of an L-system can be formally stated as follows: Let
µ = a1 . . . am be an arbitrary word over V . We will say that the word ν =
χ1 . . . χn ∈ V ∗ is directly derived from (or generated by) µ, and write µ ⇒ ν, if
and only if ai → χi for all i = 1, . . . , m. A word ν is generated by G in a derivation
of length n if there exists a developmental sequence of words µ0, µ1, . . . , µn such
that µ0 = ω, µn = ν and µ0 ⇒ µ1 ⇒ . . . µn.

Incorporating Knowledge of Secondary Structures 251

L-systems can be classified into context-free and context sensitive, according
to whether production rules refer only to an individual symbol, or to a particular
symbol only if it has certain neighborhood. L-systems can be also be determin-
istic or non-deterministic, according to whether there is exactly one production
for each symbol, or there are several, and each is chosen with a certain prob-
ability during each iteration. Finally, L-systems can be parametric if there are
numerical parameters associated with the symbols or productions.

4 Method

4.1 The Proposed Encoding: PFL-System

The encoding proposed is a simplified parametric, context-free L-system. The
alphabet will depend on the lattice and coordinate system used. For the experi-
ments reported here, we selected the square 2D lattice with relative coordinates.
Thus, the terminal symbols are {F, L, R}. Two non-terminal symbols: A and H
are included, they represent the predecessors of two predefined rules that capture
secondary structures. Thus, the l-system’s alphabet is V = {F, R, L, A, H} (see
Table 1). The axiom ω is a nonempty word in V +, each symbol in the axiom
has a parameter associated that determines the number of times it is repeated.
The maximum for these repetition values are displayed in Table 1. These values
were selected empirically for the set of (relatively short) instances studied in this
paper, they are likely to depend on the instances length and complexity. The
two prefixed rules are A = RRLL and H = LLRR, and represent a single coil
of a right-oriented and a left-oriented α-helix respectively (Figure 3). The sec-
ondary structure known as β-sheet is represented in the 2D Square HP model as
a strings of F s, so this substructure is also easily captured by the proposed en-
coding (symbol F with a parameter n > 1) (Figure 3). We termed our encoding
PFL-system, where P stands for parametric, and F for fixed rules.

Table 1. L-system’s symbols and their interpretation

Command Description Max. n Symbol
forward(n) move forward n times 4 F
right(n) move right n times 2 R
left(n) move left n times 2 L

right helix(n) right helix n times 2 A
left helix(n) left helix n times 2 H

Fig. 3. Secondary structures in the 2D HP model: (a) right-oriented α-helix, A =
RRLL; (b)left-oriented α-helix H = LLRR, (c) β-sheet , F n, n 2

252 G. Ochoa, G. Escuela, and N. Krasnogor

4.2 Evolutionary Algorithm

In order to test whether the proposed encoding can capture a target folding in
the 2D HP model, we used an EA as the inference procedure for exploring the
L-system’s space. Given a target structure in direct encoding (internal relative
coordinates) the EA will evolve a generative encoding (L-system) that, once
derived, would match closely the original target. The EA implemented was gen-
erational with linear ranking selection and elitism. As the variation operators, a
recombination and three mutation operators were implemented. A mate selec-
tion strategy [17] (dissasortative mating) was also implemented as a mechanism
for increasing the population genetic diversity. Dissasortative mating was imple-
mented as follows: when selecting two individuals for a crossover, the first parent
was selected as usual. To chose the second parent, a set of s (scan size) individ-
uals were selected using the GA fitness-based selection method. Thereafter, the
similarity between each of these s phenotypes and the first parent was computed,
the phenotype with less similarity was chosen. For the experiments reported here,
Hamming distance was used as the similarity measure, and the scan size s was
set to 5. Two stopping criteria were considered: (i) if an individual arises with
the maximum fitness, that is, its L-system grammar exactly represents the target
folding; or (ii) a preset maximum number of generations is reached. The initial
population, genetic operators, and fitness evaluation are described below.

Initialization. L-systems has two predefined production rules: A and H , and
the axiom is a variable length word ω ∈ V +. A new individual is created by
generating a random axiom of 5 to l symbols; where l is slightly larger (about
5%) than the string length of the target folding. In producing the axioms, the
probability of generating a terminal symbol {F, L, R} is 0.95 whilst that of gen-
erating a non-terminal symbol {A, H} is 0.05. These values were empirically
selected and more exhaustive studies should be performed, since the algorithm
behavior was found to be sensitive to these probabilities. Moreover, the most
effective settings are likely to depend on the particular instance under study.

Mutation. Three mutation operators were implemented: (i) addition, (ii) dele-
tion, and (iii) modification of a single symbol in the axiom of an individual. The
modification operator may alter either a symbol or its associated parameter.
When a mutation is to be performed, 60% of times it will be a modification,
30% an addition, and 10% deletion.

Recombination. Recombination takes two individuals, p1 and p2 as parents
and creates two offspring o1 and o2. Recall that individual’s axioms are of vari-
able length; a single cross point is randomly selected considering the length of
the shorter axiom (lets consider it to be p1). o1 is of the same length as p1
and inherits from it the left sub-sequence (before the cross point); and the right
sub-sequence from p2. o2 is of the same length as p2, and inherits from it the
sub-string before the cross point, then it inherits from p1 all the symbols after
the cross point, finally any remaining symbols to complete the length of o2 are
taken from p2. Thus the proposed crossover has reminiscences with both 1-point

Incorporating Knowledge of Secondary Structures 253

Fig. 4. Example of a crossover operators between two individuals of different lengths

and 2-point crossover. It will be a 1-point crossover if the two parents have the
same length. An example of this operator is detailed in Figure 4.

Derivation and Fitness Function. For computing an individual’s fitness, its
L-system is derived. Phenotypes are directly derived from the axiom, that is,
a single derivation step suffices for producing the phenotype from the genotype
since the production rules are fixed, and contain only terminal symbols. The
derived string will be truncated as soon as the length of the target folding is
reached. This means that the rightmost part of the axiom may be discarded.
The fitness value will be the number of matches between the produced phenotype
and the target folding, that is a generalized Hamming distance. So, the minimum
fitness is 0 and the maximum is the length of the desired folding.

5 Experiments and Results

Two sets of experiments were carried out. The first set compared the performance
of the newly proposed encoding against the D0L-system implemented in [6]. The
same group of proteins instances (see Table 3), and similar EA parameter settings
(see Table 2) were employed for the sake of comparison. These four instances
are available at http://www.cs.nott.ac.uk/˜nxk/hppdb.html; and their foldings
were obtained using MAFRA (Memetic Algorithm FRAmework) [14]. Notice
that these foldings are not necessarily optimal, but are close to the optimal
solution.

The number of successes (runs that produced the target folding exactly) out
of 50 runs, is shown for each encoding (Table 4). Also a summary of the secondary

Table 2. Parameter values used for the experiments

Parameter Value
Max. Number of Generations 2000

Population Size 50
Mutation Rate 0.05

Recombination Rate 1.0
Mating Strategy Disassortative (5)

254 G. Ochoa, G. Escuela, and N. Krasnogor

Table 3. Benchmark protein instances for the 2D HP model. L stands for the folding
length, which is also the maximum attainable fitness of our EA approach.

Name Protein Sequence Target Folding L

Ins18a HPHPPHHPHPPHPHHPPHPH RFRRLLRLRRFRLLRRFR 18
Ins18b HHHPPHPHPHPPHPHPHPPH RRFRFRLFRRFLRLRFRR 18
Ins22 HHPPHPPHPPHPPHPPHPPHPPHH RLLFLFFRRFLLFRRLRFFRRF 22
Ins23 PPHPPHHPPPPHHPPPPHHPPPPHH FFRRFFFLLFFFFRRFFFFLLFF 23

Table 4. Comparing No. of successful runs (runs that produced the target folding
exactly) using both D0L-systems as proposed in [6], and the parametric L-system with
fixed rules (PFL-system) proposed here

Instance Secondary Structures D0L-system PFL-system
Ins18a A, H 5/50 14/50
Ins18b None 3/50 1/50
Ins22 None 1/50 1/50
Ins23 F 3, F 4, F 4 1/50 49/50

structures found by the algorithm is included. Notice that for the instances where
secondary structures were present (Ins18a and Ins23), the new encoding (PFL-
system) produced a significant higher rate of success. Whereas for the other
two instances where there were not α-helices or β-sheets, the performance was
comparable with that of the previously proposed encoding.

In order to have a dynamic view of the two encodings’ performance, the best
fitness (averaged over 50 runs) was plotted for each generation on a selected
instance (Ins18a) (see Figure 5, Left). The best performance over the whole run
is clearly produced by the parametric L-system with fixed rules (PFL-system).

The encoding proposed in [6], was unable to capture the folding of instances
longer than twenty or so amino acids. For example, for an instance of length 34

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

11

12

13

14

15

16

17
Ins18a, Comparing Encodings

Generation

Be
st

 F
itn

es
s

PFL−system
D0L−system

0 200 400 600 800 1000 1200 1400 1600 1800 2000
16

18

20

22

24

26

28

30

32
Ins34c, Usefulness of Crossover

Generation

Be
st

 F
itn

es
s

Crossover (rate = 1.0)
No Crossover

Fig. 5. Best-performance-trace curves. Left: Ins18a with two encodings; D0L-systems
as proposed in [6], and the parametric L-system with fixed rules (PFL-system) proposed
here. Right: Ins34c with and without recombination. The curves show the average of
50 (Ins18a) and 20 (Ins34c) runs.

Incorporating Knowledge of Secondary Structures 255

Table 5. Benchmark protein instances of length 34. L stands for the folding length,
which is also the maximum attainable fitness of our EA approach.

Name Protein Sequence Target Folding L

Ins34a PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP FFLFRRLLRRFFFRRFLLFRLLFRFFLFLLRFRR 34
Ins34b HPHHHHPHHPPHPHHHHPHPPHHPPHHPPHHHHHHH RRFRLLRRLLFLFRRFLFLLRRLLRRLLFLFRRF 34
Ins34c HHHHHHHPHPHHPHPPHHPPHHPPHPHHPHPPHHPH LLFRLRRFRLLRFRRLLRRLLRRFRLLRFRRLLR 34

Table 6. Results for the benchmark instances of length 34 with and without recombi-
nation. The frequencies of obtained maximum fitness values are shown. The maximum
possible fitness is 34 (exact match).

Name Crossover Frequencies of Obtained Fitness Values Average Secondary Structures
Ins34a On 27:1, 28:3, 29:6, 30:5, 31:4, 32:0, 33:1 29.6
Ins34a Off 28:4, 29:5, 30:7, 31:4 29.55 A, F 3

Ins34b On 29:4, 30:5,31:9,32:2 30.45
Ins34b Off 28:2, 29:4, 30:6, 31:4, 32:3, 33:1 30.25 H, A, A
Ins34c On 28:2, 29:4, 30:6, 31:7, 32:0, 33:1, 30.1
Ins34c Off 27:1, 28:5, 29:9, 30:1 ,31:3, 32:1 29.15 H2, A2

(Ins34a), the best fitness statistics obtained after 20 runs were: average = 24.05,
best run = 27.0, worst run = 19.0. In order to asses whether the newly proposed
encoding had better scaling properties; a second group of experiments explored
three instances of length 34 (see Table 5). Ins34a was obtained from the same
source than the shorter instances described above, whereas Ins34b and c, and
their foldings were taken from [21]. The parameter settings for these experiments
are the same as before (see Table 2), but the number of replicas were 20 instead
of 50 Furthermore, runs with and without crossover were carried out in order to
asses the usefulness of this operator in this context.

Results suggest that the PFL-system encoding has better scaling proper-
ties than the previous D0L-system. Although the perfect match (34) was not
found in any run, most runs arrive very close to the solution. Table 6, shows
the frequencies of obtained maximum fitness for each instance with and with-
out crossover. Crossover seems to be helpful to the evolutionary search although

Table 7. Best obtained individual, represented in PFL-system encoding, for each of
the benchmark instances studied

Instance Best Solution (PFL-system Encoding) Encoding Length
Ins18a RFARLR2FRHFR 11
Ins18b R2FRFRLFR2FLRLRFR2 15
Ins22 RL2FLF 2R2FL2FR2LRF 2R2F 15
Ins23 F 2R2F 3L2F 4R2F 4L2F 2 9
Ins34a F 2LFAR2F 3R2FL2FRL2FRF 2LFL2RFR2 21
Ins34b R2FRHL2FLFR2FLFL2A2FLFR2F 19
Ins34c L2F 2R2RFRL2RFR2H2FRLLRFA2 18

256 G. Ochoa, G. Escuela, and N. Krasnogor

the differences are not substantial. Some instances seems to benefit more from
crossover than others.In order to have a dynamic view of the algorithm behav-
ior with and without recombination, Figure 5 (Right) shows best-performance
curves over the whole run for Inst34c. Clearly the recombinant GA outperform
the GA with mutation only.

As a summary of results, the best solutions obtained with the PFL-system,
for all the instances studied, are shown in Table 7. Notice that the inclusion of
parameters helps in having a more compact representation of a folding, also the
occurrence of secondary structures is captured and easily identified with this
representation.

6 Discussion

An encoding scheme for protein folding in the HP model, inspired by paramet-
ric L-systems, was proposed. The encoding also incorporates problem domain
knowledge in the form of predesigned production rules that capture the most
commonly known secondary structures: α-helices and β-sheets. The ability of
this encoding to capture protein native conformations was tested using an EA
as the inference procedure for discovering L-systems. Given a target folding, the
EA explores the space of possible L-systems (genotypes) until identifying one
whose derivation (phenotype) closely matches the target folding.

This newly proposed encoding was found to improve our first attempt of
using L-systems as a generative representation for protein folding [6], where
problem domain knowledge was not incorporated. The suitability of the new en-
coding, however, seems to heavily depend on the particular instance under study.
Instances with high frequencies of α-helices and β-sheets, would have a clear ad-
vantage. Longer proteins and 3D lattices should be addressed. Furthermore, two
somehow opposite but complementary extensions could be suggested. First, in-
corporating other known secondary structures such as β-turns, β-hairpins, etc.,
as prefixed rules. Secondly, enabling the EA to discover their own production
rules, that could be in principle stored and thereafter used in further runs with
new instances. We have evidence on a related bioinformatic problem [12] that
enabling the evolutionary algorithm to systematically and vigorously discover
new “building blocks” (as the ones we described in this paper) can substantially
improve the algorithm performance.

Finally, we believe that this proposed line of research opens up the pos-
sibilities for novel and compact encoding schemes of protein structures, that
have potential implications in solving meaningful biotechnology problems such
as structure prediction and protein folding.

Acknowledgements

Natalio Krasnogor acknowledges EPSRC (GR/T07534/01, EP/D021847/1) and
BBSRC (BB/C511764/1) for funding his research on protein structure predic-
tion, comparison and self-assembly

Incorporating Knowledge of Secondary Structures 257

References

[1] David Baker and Andrej Sali, Protein structure prediction and structural ge-
nomics, Science 294 (2001), 93–96.

[2] Peter J. Bentley, Exploring component-based representations - the secret of cre-
ativity by evolution?, Fourth International Conference on Adaptive Computing in
Design and Manufacture (ACDM 2000) (I. C. Parmee, ed.), 2000, pp. 161–172.

[3] Luis DaCosta and Jacques-Andre Landry, Generating grammatical plant models
with genetic algorithms, Proceedings of the 7th International Conference on Adap-
tive and Natural ComputiNG Algorithms (ICANNGA, LNCS, Springer Verlag,
2005.

[4] T. Dandekar and P. Argos, Folding the main chain of small proteins with the
genetic algorithm, J. Mol. Biol 236 (1994), 844–861.

[5] Ken A. Dill, Theory for the folding and stability of globular proteins, Biochemistry
24 (1985), 1501.

[6] Gabi Escuela, Gabriela Ochoa, and Natalio Krasnogor, Evolving L-systems to
capture protein structure native conformations, Proceedings of the 8th European
Conference on Genetic Programming, Lecture Notes in Computer Science, vol.
3447, Springer, 2005, pp. 74–84.

[7] L. J. Fogel, P. J. Angeline, and T. Bäck (eds.), Shape representations and evolution
schemes, MIT Press, 1996.

[8] Gregory S. Hornby and Jordan B. Pollack, The advantages of generative gram-
matical encodings for physical design, Proceedings of the 2001 Congress on Evo-
lutionary Computation CEC2001, IEEE Press, 2001, pp. 600–607.

[9] G. Kókai, Z. Tóth, and R. Ványi, Modelling blood vessels of the eye with paramet-
ric L-systems using evolutionary algorithms, Proceedings of the Joint European
Conference on Artificial Intellingence in Medicine and Medical Decision Making
(AIMDM-99) (Berlin), LNAI, vol. 1620, Springer, 1999, pp. 433–442.

[10] Natalio Kranogor, Studies on the theory and design space of memetic algorithms,
Ph.D. thesis, University of the West of England, Bristol, UK, 2002.

[11] N. Krasnogor, B. P. Blackburne, E. K. Burke, and J. D. Hirst, Multimeme algo-
rithms for protein structure prediction, Lecture Notes in Computer Science 2439
(2002), 769–779.

[12] Natalio Krasnogor and Stephen Gustafson, The local searcher as a supplier of
building blocks in self-generating, Workshop Proceedings of the 2003 Genetic and
Evolutionary Computation Conference, GECCO 2003, 2003.

[13] Natalio Krasnogor, D. Pelta, P.E. Martinez-Lopez, P. Mocciola, and E. de la
Canal, Enhanced evolutionary search of foldings using parsed proteins, Proceed-
ings of the Argentinian Operational Research Simposium (S.I.O. 97), 1997.

[14] Natalio Krasnogor and Jim Smith, MAFRA: A java memetic algorithms frame-
work, Data Mining with Evolutionary Algorithms (Alex A. Freitas, William Hart,
Natalio Krasnogor, and Jim Smith, eds.), 2000, pp. 125–131.

[15] Neal Lesh, Michael Mitzenmacher, and Sue Whitesides, A complete and effec-
tive move set for simplified protein folding, Proceedings 7h Annual International
Conference on Research in Computational Molecular Biology (RECMB), 2003.

[16] F. Liang and W. Wong, Evolutionary monte carlo for protein folding simulations,
Journal of Chemical Physics 115 (2001), no. 7, 3374–3380.

[17] Gabriela Ochoa, C. Mädler-Kron, R. Rodriguez, and K. Jaffe, Assortative mating
in genetic algorithms for dynamic problems, Applications of Evolutionary Com-
puting, EvoWorkshops2005, LNCS, vol. 3449, Springer Verlag, 2005, pp. 605–610.

258 G. Ochoa, G. Escuela, and N. Krasnogor

[18] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants, Springer,
New York, 1990.

[19] Alvy R. Smith, Plants, fractals, and formal languages, Computer Graphics 18
(1984), no. 3, 1–10.

[20] I. Unger and J. Moult, Genetic algorithms for protein folding simulations, Journal
of Molecular Biology 1 (1993), no. 231, 75–81.

[21] Berrin Yanikoglu and Burak Erman, Minimum energy configurations of the 2-
dimensional hp-model of proteins by self-organizing networks, Journal of Compu-
tational Biology 9 (2002), no. 4, 613–620.

	Introduction
	The HP Model
	Problem Encoding

	L-Systems
	Method
	The Proposed Encoding: PFL-System
	Evolutionary Algorithm

	Experiments and Results
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

