Abstract
An encoding scheme for protein folding on lattice models, inspired by parametric L-systems, was proposed. The encoding incorporates problem domain knowledge in the form of predesigned production rules that capture commonly known secondary structures: α-helices and β-sheets. The ability of this encoding to capture protein native conformations was tested using an evolutionary algorithm as the inference procedure for discovering L-systems. Results confirmed the suitability of the proposed representation. It appears that the occurrence of motifs and sub-structures is an important component in protein folding, and these sub-structures may be captured by a grammar-based encoding. This line of research suggests novel and compact encoding schemes for protein folding that may have practical implications in solving meaningful problems in biotechnology such as structure prediction and protein folding.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baker, D., Sali, A.: Protein structure prediction and structural genomics. Science 294, 93–96 (2001)
Bentley, P.J.: Exploring component-based representations - the secret of creativity by evolution? In: Parmee, I.C. (ed.) Fourth International Conference on Adaptive Computing in Design and Manufacture (ACDM 2000), pp. 161–172 (2000)
DaCosta, L., Landry, J.-A.: Generating grammatical plant models with genetic algorithms. In: Proceedings of the 7th International Conference on Adaptive and Natural ComputiNG Algorithms (ICANNGA). LNCS, Springer, Heidelberg (2005)
Dandekar, T., Argos, P.: Folding the main chain of small proteins with the genetic algorithm. J. Mol. Biol. 236, 844–861 (1994)
Ken, A.: Dill, Theory for the folding and stability of globular proteins. Biochemistry 24, 1501 (1985)
Escuela, G., Ochoa, G., Krasnogor, N.: Evolving L-systems to capture protein structure native conformations. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J.I., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 74–84. Springer, Heidelberg (2005)
Fogel, L.J., Angeline, P.J., Bäck, T. (eds.): Shape representations and evolution schemes. MIT Press, Cambridge (1996)
Hornby, G.S., Pollack, J.B.: The advantages of generative grammatical encodings for physical design. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC 2001, pp. 600–607. IEEE Press, Los Alamitos (2001)
Kókai, G., Tóth, Z., Ványi, R.: Modelling blood vessels of the eye with parametric L-systems using evolutionary algorithms. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J.C. (eds.) AIMDM 1999. LNCS (LNAI), vol. 1620, pp. 433–442. Springer, Heidelberg (1999)
Kranogor, N.: Studies on the theory and design space of memetic algorithms, Ph.D. thesis, University of the West of England, Bristol, UK (2002)
Krasnogor, N., Blackburne, B.P., Burke, E.K., Hirst, J.D.: Multimeme algorithms for protein structure prediction, Lecture Notes in Computer Science. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 769–779. Springer, Heidelberg (2002)
Krasnogor, N., Gustafson, S.: The local searcher as a supplier of building blocks in self-generating. In: GECCO 2003 (2003)
Krasnogor, N., Pelta, D., Martinez-Lopez, P.E., Mocciola, P., de la Canal, E.: Enhanced evolutionary search of foldings using parsed proteins. In: Proceedings of the Argentinian Operational Research Simposium (S.I.O. 1997) (1997)
Krasnogor, N., Smith, J.: MAFRA: A java memetic algorithms framework. In: Freitas, A.A., Hart, W., Krasnogor, N., Smith, J. (eds.) Data Mining with Evolutionary Algorithms, pp. 125–131 (2000)
Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. In: Proceedings 7h Annual International Conference on Research in Computational Molecular Biology (RECMB) (2003)
Liang, F., Wong, W.: Evolutionary monte carlo for protein folding simulations. Journal of Chemical Physics 115(7), 3374–3380 (2001)
Ochoa, G., Mädler-Kron, C., Rodriguez, R., Jaffe, K.: Assortative mating in genetic algorithms for dynamic problems. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 605–610. Springer, Heidelberg (2005)
Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer, Heidelberg (1990)
Smith, A.R.: Plants, fractals, and formal languages. Computer Graphics 18(3), 1–10 (1984)
Unger, I., Moult, J.: Genetic algorithms for protein folding simulations. Journal of Molecular Biology 1(231), 75–81 (1993)
Yanikoglu, B., Erman, B.: Minimum energy configurations of the 2-dimensional hp-model of proteins by self-organizing networks. Journal of Computational Biology 9(4), 613–620 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ochoa, G., Escuela, G., Krasnogor, N. (2006). Incorporating Knowledge of Secondary Structures in a L-System-Based Encoding for Protein Folding. In: Talbi, EG., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2005. Lecture Notes in Computer Science, vol 3871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11740698_22
Download citation
DOI: https://doi.org/10.1007/11740698_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33589-4
Online ISBN: 978-3-540-33590-0
eBook Packages: Computer ScienceComputer Science (R0)