Skip to main content

A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm

  • Conference paper
Artificial Evolution (EA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3871))

Abstract

This work proposes a new rule pruning procedure for Ant-Miner, an Ant Colony algorithm that discovers classification rules in the context of data mining. The performance of Ant-Miner with the new pruning procedure is evaluated and compared with the performance of the original Ant-Miner across several datasets. The results show that the new pruning procedure has a mixed effect on the performance of Ant-Miner. On one hand, overall it tends to decrease the classification accuracy more often than it improves it. On the other hand, the new pruning procedure in general leads to the discovery of classification rules that are considerably shorter, and so simpler (more easily interpretable by the users) than the rules discovered by the original Ant-Miner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem. BioSystems 43, 73–81 (1997)

    Article  Google Scholar 

  2. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. Journal of Insect Behaviour 3, 159–168 (1990)

    Article  Google Scholar 

  3. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data Mining with an Ant Colony Optimization Algorithm. IEEE Trans. on Evolutionary Comput. 6(4), 1–332 (2002)

    Article  MATH  Google Scholar 

  4. Carvalho, D.R., Freitas, A.A.: A hybrid decision tree/genetic algorithm method for data mining. Information Sciences 163(1-3), 13–35 (2004)

    Article  Google Scholar 

  5. Witten, I.H., Frank, E.: Data Mining – Pratical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  6. UCI Machine Learning Repository (University of California at Irvine) (visited October 14, 2004), http://www.ics.uci.edu/mlearn/MLSummary.html

  7. Holden, N., Freitas, A.A.: Web Page Classification with an Ant Colony Algorithm. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 1092–1102. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  9. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Fayyad, U.M., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 1–34. AAAI/MIT (1996)

    Google Scholar 

  10. Holden, N., Freitas, A.A.: A Hybrid Particle Swarm/Ant Colony Algorithm for the Classification of Hierarchical Biological Data. In: Proc. 2005 IEEE Swarm Intelligence Symposium, pp. 100–107. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  11. Chen, A.: Ant Colony Optimisation for High-Dimensional and Multi-Label Classification in Data Mining. Master Thesis (in preparation). University of Kent, UK (September 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, A., Freitas, A. (2006). A New Classification-Rule Pruning Procedure for an Ant Colony Algorithm. In: Talbi, EG., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2005. Lecture Notes in Computer Science, vol 3871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11740698_3

Download citation

  • DOI: https://doi.org/10.1007/11740698_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33589-4

  • Online ISBN: 978-3-540-33590-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics