
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 384 (2007) 22–32
www.elsevier.com/locate/tcs

Valiant’s Holant Theorem and matchgate tensors

Jin-Yi Cai∗, Vinay Choudhary

Computer Sciences Department, University of Wisconsin, Madison, WI 53706, USA

Abstract

We propose matchgate tensors as a natural and proper language to develop Valiant’s new theory of Holographic Algorithms. We
give a treatment of the central theorem in this theory – the Holant Theorem – in terms of matchgate tensors. Some generalizations
are presented.
c© 2007 Published by Elsevier B.V.

Keywords: Holographic algorithms; Perfect matchings; Matchgates; Matchcircuit; Matchgrid; Signatures; Grassmann–Plücker identities; Covariant
and contravariant tensors; Holant

1. Background

In a remarkable paper, Valiant [17] in 2004 has proposed a completely new theory of Holographic Algorithms or
Holographic Reductions. In this framework, Valiant has developed a most novel methodology of designing polynomial
time (indeed NC2) algorithms, a methodology by which one can design a custom made process capable of carrying
out a seemingly exponential computation with exponentially many cancellations so that the computation can actually
be done in polynomial time.

The simplest analogy is perhaps with Strassen’s matrix multiplication algorithm [11]. Here the algorithm computes
some extraneous quantities in terms of the submatrices, which do not directly appear in the answer yet only to be
canceled later, but the purpose of which is to speed up computation by introducing cancellations. In the several
cases where such clever algorithms had been found, they tend to work in a linear algebraic setting, in particular the
computation of the determinant figures prominently [14,8,12]. Valiant’s new theory manages to create a process of
custom made cancellation which gives polynomial time algorithms for combinatorial problems which do not appear
to be linear algebraic.

In terms of its broader impact in complexity theory, one can view Valiant’s new theory as another algorithmic
design paradigm which pushes back the frontier of what is solvable in polynomial time. Admittedly, at this early
stage, it is still premature to say what drastic consequence it might have on the landscape of the big questions of
complexity theory, such as P vs. NP. But the new theory has already been used by Valiant to devise polynomial time
algorithms for a number of problems for which no polynomial time algorithms were known before.

∗ Corresponding author. Tel.: +1 608 262 3158; fax: +1 608 262 9777.
E-mail address: jyc@cs.wisc.edu (J.-Y. Cai).

0304-3975/$ - see front matter c© 2007 Published by Elsevier B.V.
doi:10.1016/j.tcs.2007.05.015

Author's personal copy

J.-Y. Cai, V. Choudhary / Theoretical Computer Science 384 (2007) 22–32 23

Unless and until a proof of P 6= NP is found, one should regard this as an open problem. We can ask ourselves on
what basis we derive confidence on the truth of this conjecture. In our view this confidence is not based on any partial
lower bounds which are either for very restricted models of computation or are still very weak. Fundamentally this
source of confidence in P 6= NP comes from the fact that all existing algorithmic approaches do not seem to tackle
a myriad of NP-complete problems. Valiant’s new theory of holographic algorithms challenges us to re-examine this
belief critically.

The theory is quite unlike anything before, and it is a delicate theory that will be difficult to explain without all
the definitions. The central theorem in this theory is the beautiful Holant Theorem, which is the linchpin that holds
everything together and makes it all possible. But, at least to us, the actual proof of the theorem in [17] was a little
mysterious and somewhat difficult to understand. We believe the source of this difficulty lies in the way how one
defines the main concepts of the theory.

The main purpose of this paper is to give a development of the theory based on the concept of tensors. While
tensor product as an operation was already used by Valiant in [17], here our viewpoint is different in that we start
off with the concepts of covariant and contravariant tensors, and, as it is customary in modern geometry, we strive
to give it a coordinate free framework. Then various transformations of these tensors follow from general principles
in tensor space. We then give a tensor theoretic proof of Valiant’s Holant Theorem. It is suggested that once we have
properly defined all the concepts based on covariant and contravariant tensors, Valiant’s beautiful Holant Theorem
can be understood as a natural expression of tensors.

Given the conceptual clarity afforded by the tensor perspective, we can easily see some generalizations of the
Holant Theorem which follow from this framework.

2. Valiant’s definitions

In this section we give a brief account of the key definitions of Valiant’s theory, starting with the matching problem.
More details can be found in [17].

Given a graph G, a matching of G is a set of edges no two of which share a vertex. A perfect matching M is a
matching such that every vertex of G is incident to one edge of M . The decision problem of whether there is a perfect
matching in G is computable in P, one of the notable achievements in the study of Algorithms. However, it is known
that counting the number of perfect matchings in G is #P-complete.

We assign to every edge e = (i, j) a variable xi j , where i < j . Then we define the following polynomial

PerfMatch(G) =

∑
M

∏
(i, j)∈M

xi j ,

where the sum is over all perfect matchings M . PerfMatch(G) is a polynomial on
(n

2

)
many variables xi j , 1 ≤ i <

j ≤ n. If the graph is a weighted graph with weights wi j , we can also evaluate PerfMatch(G) at xi j = wi j . Note that
if all the weights are 1, then PerfMatch(G) just counts the number of perfect matchings in the graph.

A most remarkable result due to Fisher, Kasteleyn and Temperley (FKT) ([13,9], and [10]), from statistical physics
is that for planar graphs, this Perfect Matching polynomial PerfMatch(G) can be evaluated in polynomial time. In fact
it can be evaluated as a Pfaffian of a skew-symmetric matrix which is constructible from a planar embedding of G in
polynomial time.

In effect, Valiant’s theory allows the expression of a desired computation as an exponential sum, called the Holant,
and via the Holant Theorem, reduces to the problem of computing the number of perfect matchings on planar graphs.
This is done via the evaluation of PerfMatch(G) by the FKT method, for a suitably constructed Matchgrid, composed
of matchgates, which we proceed to define. These reductions are called holographic reductions, because they carry
out exponentially many cancellations analogous to a pattern of interference in quantum computing.

Define a planar matchgate Γ as a triple (G, X, Y) where G is a planar embedding of a weighted planar graph
(V, E, W), X ⊆ V is a set of input nodes, Y ⊆ V is a set of output nodes, and X ∩ Y = ∅. Furthermore in the planar
embedding of G, counter-clockwise one encounters vertices of X , labeled 1, . . . , |X | and then vertices of Y , labeled
|Y |, . . . , 1.

Valiant defines the standard signature, u(Γ), of Γ to be a 2|X |
× 2|Y | matrix whose entries are indexed by subsets

X ′
⊆ X and Y ′

⊆ Y , and the entry indexed by (X ′, Y ′) is PerfMatch(G − Z), where Z = X ′
∪ Y ′. Here G − Z

denotes the subgraph of G obtained by removing the subset of nodes in Z (and all their incident edges). We will make

Author's personal copy

24 J.-Y. Cai, V. Choudhary / Theoretical Computer Science 384 (2007) 22–32

one slight (harmless) change here. We take the transpose of this matrix to be the standard signature. This is to conform
to (one standard) notation in view of later development in terms of covariant and contravariant tensors [7]. Thus the
standard signature for us is a 2|Y |

× 2|X | matrix.
Matchgates with only output nodes are called generators. Matchgates with only input nodes are called recognizers.

More generally, with both input and output nodes a matchgate is called a transducer. We note that the standard
signature of a generator is a column vector and the standard signature of a recognizer is a row vector.

Let b denote the standard basis for two dimensional space, b = [e0, e1] =

[(
1
0

)
,

(
0
1

)]
. Consider another basis

β = [n, p] =

[(
n0
n1

)
,

(
p0
p1

)]
.

Let Γ be a generator with m output nodes. Then by definition its standard signature u(Γ) is a 2m-vector. Valiant
then defines the signature of this generator with respect to the basis β as the coefficients of u(Γ) when expressed in
the new basis β. More precisely, for an m-tuple tensor product x = x1 ⊗ x2 ⊗ · · · ⊗ xm , where xi = n or p, Valiant
defines valG(Γ , x), “the signature element corresponding to x” [17], to be the coefficient of x when u(Γ) is expressed
as a sum over {n, p}⊗ {n, p}⊗ · · ·⊗ {n, p}. (Technically, Valiant’s theory also allows a basis to be a set of dependent
vectors; but in order that u(Γ) be expressible in the new basis, it is implicitly required that the standard signature be
in the linear span of the tensor products of the new basis. In this case, any such linear expression gives rise to a set
of values valG(Γ , x). We will see that this slight complication can be easily handled (see the discussion at the end of
Sections 3 and 4); but for simplicity of development, we will assume for now that the basis β = [n, p] consists of
independent vectors as a basis ordinarily does.)

Turning to recognizers, let Γ ′ be a recognizer with m input nodes. Let x = x1⊗x2⊗· · ·⊗xm range over 2m possible
values, where each xi = n or p. Now Valiant treats x as a 2m-vector in the standard basis, and defines valR(Γ ′, x),
“the recognizer matchgate Γ ′ ‘evaluated at input’ x” [17], to be the inner product of the standard signature u(Γ) with
x .

Next Valiant defines a matchgrid Ω = (A, B, C) to be a weighted planar graph consisting of a disjoint union of:
a set of g generators A = (A1, . . . , Ag), a set of r recognizers B = (B1, . . . , Br), and a set of f connecting edges
C = (C1, . . . , C f), where each Ci edge has weight 1 and joins an output node of a generator with a input node
of a recognizer, so that every input and output node in every constituent matchgate has exactly one such incident
connecting edge.

Now we come to the central definition of Valiant’s theory—the Holant.

Holant(Ω) =

∑
x∈β

⊗ f

{
[Π1≤i≤gvalG(Ai , x |Ai)] · [Π1≤ j≤r valR(B j , x |B j)]

}
.

The following is the beautiful Holant Theorem.

Theorem 2.1 (Valiant). For any matchgrid Ω over any basis β, let G be its underlying weighted graph, then

Holant(Ω) = PerfMatch(G).

3. A treatment in terms of vectors

In this section we rephrase Valiant’s definitions in terms of vectors; this serves as a transition to the ultimate tensor
framework.

Let Γ be a generator with m output nodes. We now consider the object called valG(Γ) as a (column) vector, whose
entries are indexed by x ∈ β⊗m

= {n, p}
⊗m . Let T be the transformation matrix from b to β, namely

[n, p] = [e0, e1]T,

where

T =

(
n0 p0
n1 p1

)
.

Author's personal copy

J.-Y. Cai, V. Choudhary / Theoretical Computer Science 384 (2007) 22–32 25

We form the tensor product matrix T ⊗m which transforms the basis b⊗m to β⊗m . This follows because tensor product
“distributes” over matrix product, from β = bT we get,

β⊗m
= (bT)⊗m

= b⊗m T ⊗m .

Then we claim that the vector valG(Γ) is obtained from the standard signature u(Γ) by multiplying the tensor product
matrix (T ⊗m)−1

= (T −1)⊗m :

valG(Γ) = (T −1)⊗mu(Γ),

where for a generator Γ , we recall that the standard signature u(Γ) is a column vector of dimension 2m . This agrees
with Valiant’s definition since

b⊗m
= β⊗m(T ⊗m)−1

= β⊗m(T −1)⊗m,

and therefore

(b)⊗mu(Γ) = (β)⊗m(T −1)⊗mu(Γ)

is the expression of the standard signature expressed in the new basis β, i.e., the entry of the vector (T −1)⊗mu(Γ)

indexed by x ∈ {n, p}
⊗m is what was called valG(Γ , x) in Section 2.

We next consider recognizers. Let Γ ′ be a recognizer with m input nodes. We will define valR(Γ ′) as a (row)
vector. But more precisely we will consider valR(Γ ′) as a vector belonging to the dual space X∗, where X is the linear
span of β⊗m .

Let β∗
=

(
n∗

p∗

)
denote the dual basis to β, namely n∗, p∗ are linear functions on the linear space spanned by β,

such that n∗(n) = 1, n∗(p) = 0, p∗(n) = 0, p∗(p) = 1. Then the dual basis to β⊗m is simply (β∗)⊗m .
When we have a basis transformation β = bT from b to β, the dual basis transforms as follows

β∗
= T −1b∗.

This follows from general principles. (See Section 4.)
Now we claim that what was defined by Valiant as valR(Γ ′, x), as x ranges over β⊗m , amounts to a dual vector

valR(Γ ′) in X∗, whose entries are indexed by x∗
∈ (β∗)⊗m , i.e., we claim

valR(Γ ′) = u(Γ ′)T ⊗m,

under the basis (β∗)⊗m in X∗.
The standard signature u(Γ ′) is really a dual vector in X∗,

u(Γ ′)(b∗)⊗m .

Since the dual basis transforms as

b∗
= T β∗,

we get

(b∗)⊗m
= T ⊗m(β∗)⊗m,

and therefore u(Γ ′)(b∗)⊗m takes the form

u(Γ ′)(b∗)⊗m
= u(Γ ′)T ⊗m(β∗)⊗m,

in the new basis. Notice that the entry of this vector indexed by x∗
∈ (β∗)⊗m is precisely the inner product of u(Γ ′)

with the column of T ⊗m indexed by x∗, and the latter is nothing but the vector of coefficients when x ∈ β⊗m is
expressed in terms of the standard basis b⊗m . Thus we have reconciled this formulation with Valiant’s definition.

Now consider the definition of the Holant. We assume Ω = (A, B, C) is a matchgrid where each generator Ai has
mi output nodes and each recognizer B j has ` j input nodes.

Author's personal copy

26 J.-Y. Cai, V. Choudhary / Theoretical Computer Science 384 (2007) 22–32

The definition of valG and valR in our linear algebra formulation makes the following observation transparent. The
Holant in fact is an evaluation of an inner product of two vectors, one of which is the tensor product of all the valG(Ai)

over the generators, and the other is the tensor product of all the valR(B j) over the recognizers. More precisely (and
it gives the same numerical result) this quantity Holant(Ω) is the result of applying a dual vector in X∗, which is the
tensor product

⊗
j [valR(B j)(β

∗)⊗` j], on a primal vector in X , which is also a tensor product
⊗

i [(β)⊗mi valG(Ai)],
where the f copies of the basis vectors in β are in 1–1 correspondence as given by the f connecting edges in C .

Thus

Holant(Ω) =

∑
x∈β

⊗ f

[⊗
i

valG(Ai)

]
x

·

[⊗
j

valR(B j)

]
x∗

=

〈⊗
j

valR(B j),
⊗

i

valG(Ai)

〉
.

Note that the sum
∑

x∈β
⊗ f is precisely over all the entries in the two tensor product vectors which are indexed by

x ∈ β⊗ f , and by the corresponding x∗
∈ (β∗)⊗ f , respectively. Here we have adopted the conventional notation 〈·, ·〉

for the inner product. For a row vector Y and a column vector Z of the same dimension, the inner product 〈Y, Z〉 is
just Y · Z =

∑
i Yi Zi .

The total number of output nodes of all Ai is the same as the total number of input nodes of all B j , i.e.,∑
i mi =

∑
j ` j = f , the total number of interconnecting wires between the generators and the recognizers. Note

that, according to an appropriate ordering of the indices,
⊗

i valG(Ai) can be expressed by the matrix–vector product
form

[⊗i (T ⊗mi)−1
][⊗i u(Ai)],

which is just (T ⊗ f)−1
[⊗i u(Ai)].

Similarly the tensor product
⊗

j valR(B j , ·) can be expressed by

[⊗ j u(B j)]T
⊗ f .

Now the beautiful thing is that the adjacent T ⊗ f and (T ⊗ f)−1 cancel in the inner product, and finally we get

Holant(Ω) = 〈⊗ j u(B j), ⊗i u(Ai)〉.

What we have now is the definition of the Holant under the standard basis b.
Stripping away all its linear algebraic layers, we can finally see the combinatorial reason why the Holant Theorem

holds: The set of all perfect matchings on G can be partitioned according to exactly the subset of edges S among the
f connecting edges C1, C2, . . . , C f that is part of the matching. And summed over this partition is precisely what the
Holant Theorem states in the standard basis b:

Holant(Ω) = PerfMatch(G).

As a postscript, we note that the transformation matrix T need not be invertible or even square, as long as the
standard signature of the generators can be expressed in the linear span of β⊗.

Assume the standard signature b⊗mu(Γ) is in the linear span of β⊗m , where Γ has m output nodes. Then there
exists a (column) vector v such that

b⊗mu(Γ) = β⊗mv.

We can then define valG(Γ) to be this v,

valG(Γ) = v.

(This v may not be unique, but any such v will do.) It follows that

b⊗mu(Γ) = β⊗mv = b⊗m T ⊗mvalG(Γ).

So

u(Γ) = T ⊗mvalG(Γ).

Author's personal copy

J.-Y. Cai, V. Choudhary / Theoretical Computer Science 384 (2007) 22–32 27

Then the proof of the Holant Theorem above still holds, as

Holant(Ω) =

〈⊗
j

valR(B j),
⊗

i

valG(Ai)

〉
= [⊗ j u(B j)T ⊗ f

] · [⊗i valG(Ai)]

= [⊗ j u(B j)] · [⊗i u(Ai)]

= 〈⊗ j u(B j), ⊗i u(Ai)〉.

4. Valiant’s theory based on tensors

In this section we will give a tensor theoretic treatment of Valiant’s Holant Theorem.

4.1. Covariant and contravariant tensors

First we briefly recall some notations regarding covariant and contravariant tensors. We will avoid any overly
abstract framework of these concepts, but will appeal to the notion of a coordinate-free definition of a tensor, which
exists in a certain tensor space a priori. Such a tensor has various expressions according to the basis of the tensor
space chosen, and these expressions transform according to simple transformation rules when one changes from one
basis to another.

At an operational level, one can think of it as follows: Let V be a vector space of dimension d over some field
F. Let b = {b1, . . . , bd} be a basis. Now with respect to this basis b, every vector of V has a unique expression as∑d

i=1 x i bi (which is usually abbreviated in this area of mathematics as just x i bi , with a matching upper and lower
index i automatically being summed). One has a dual space V ∗ and a dual basis to b, denoted as b∗

= {b1, . . . , bd
},

where bi (b j) = δi
j .

From V and V ∗ one can form tensor product space of any arity. So, e.g., the space V 3
2 of type

(3
2

)
is a tensor product

space of dimension d5, and has a basis {bi ⊗ b j ⊗ bk ⊗ b`
⊗ bm

}, where all indices run from 1 to d. Any element

x ∈ V 3
2 is called a tensor, and has the expression

∑
i jk`m x i jk

`m bi ⊗ b j ⊗ bk ⊗ b`
⊗ bm , or simply (x i jk

`m), and is called
covariant on `, m and contravariant on i, j, k. In particular vectors in V are contravariant and dual vector in V ∗ are
covariant. The terminology is derived from the way they transform under a basis transformation.

Let β = bT be a new basis. In coordinates,

β j =

∑
i

bi t
i
j ,

where the (i, j) entry of T is t i
j . (Upper index is for row, lower index is for column.) Then it can be easily verified for

the dual basis that

β∗
= T −1b∗,

where β∗
= {β1, . . . ,βd

} is dual to β. Indeed, by denoting T −1
= (t̃ i

j), we have β i (β j) =
∑

k t̃ i
kbk(

∑
l bl t l

j) =∑
k,l t̃ i

k t l
jδ

k
l = δi

j .

In coordinates, if x =
∑

x i bi ∈ V , then under a basis transformation, x =
∑

(x ′)i ′β i ′ where

(x ′)i ′
=

∑
i

t̃ i ′
i x i .

If x∗
=

∑
xi bi

∈ V ∗ in the dual space, then under the same basis transformation, x∗
=

∑
(x ′)i ′β

i ′ where

(x ′)i ′ =

∑
i

t i
i ′ xi .

Thus, vectors in V are contravariant and vectors in V ∗ are covariant.

Author's personal copy

28 J.-Y. Cai, V. Choudhary / Theoretical Computer Science 384 (2007) 22–32

This extends to tensors of any “type”. E.g., a tensor in V 3
2 , x = (x i jk

`m) is contravariant on the three upper indices
and covariant on the two lower indices. And it transforms as

(x ′)
i ′ j ′k′

`′m′ =

∑
i, j,k,`,m

t̃ i ′
i t̃ j ′

j t̃k′

k t``′ tm
m′ x

i jk
`m .

Finally a contraction on an index i for a pair of tensors (x i ...
j ...) and (yk...

i ...) is simply an application of the dual on the
primal; in terms of coordinates∑

i

x i ...
j ...y

k...
i

The reader is referred to [7] for more details.

4.2. Holant Theorem based on tensors

In this section we will give a tensor theoretic treatment of Valiant’s Holant Theorem.
In Section 2, we defined the objects valG and valR as vectors. However, an even more appropriate home for these

objects are in tensor spaces of type
(m

0

)
for the generators and

(0
m

)
for the recognizers.

Thus, consider a generator matchgate Γ whose underlying weighted graph G has m output nodes. We consider
a vector space V of dimension 2 over some field F has already been fixed. We may choose some basis b of V and
consider it the standard basis. We assign to this matchgate a tensor G ∈ V m

0 of type
(m

0

)
. This tensor under the standard

basis has the form∑
Gi1i2...im bi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where

Gi1i2...im = PerfMatch(G − Z),

where Z is the subset of the output nodes having the characteristic sequence χZ = i1i2 . . . im . Note that we are putting
the matchgate tensor G in a tensor space a priori, and the expression of G under a particular basis is subordinate to
that. In particular, G transforms as a contravariant tensor under a basis transformation β = bT , as

(G ′)i ′1i ′2...i
′
m =

∑
Gi1i2...im t̃

i ′1
i1

t̃
i ′2
i2

. . . t̃
i ′m
im

.

This tensor is what we have been calling valG(Γ). As a tensor of type
(m

0

)
, it is usually abbreviated as simply Gi1i2...im .

Now consider a recognizer Γ ∗ whose underlying weighted graph G∗ has m input nodes. To Γ ∗ we will assign a
tensor R ∈ V 0

m of type
(0

m

)
. This tensor under the standard (dual) basis has the form∑

Ri1i2...im bi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where

Ri1i2...im = PerfMatch(G∗
− Z),

where Z is the subset of the input nodes having χZ = i1i2 . . . im . Again we put the matchgate tensor R in a tensor
space a priori. In particular, when changing a basis β j =

∑
i bi t i

j , R transforms as a covariant tensor should, namely

(R′)i ′1i ′2...i
′
m

=

∑
Ri1i2...im t i1

i ′1
t i2
i ′2

. . . t im
i ′m

.

This tensor is what we have been calling valR(Γ ∗).
In a matchgrid Ω = (A, B, C) the indices of various generators and recognizers are matched up in a 1–1

correspondence by the f connecting edges. Then, in the language of tensors, the definition of the Holant is just a
contraction on all pairs of corresponding indices.

We denote by G the tensor product of all the generator tensors over Ai and R the tensor product of all the recognizer
tensors over B j , where the ordering of the indices are according to the f connecting edges in C of Ω in both G and

Author's personal copy

J.-Y. Cai, V. Choudhary / Theoretical Computer Science 384 (2007) 22–32 29

R. They match up in a 1–1 correspondence. Then G ∈ V f
0 and R ∈ V 0

f , and the Holant is the contraction of R with G
by contracting on all the corresponding indices, which we can denote simply as

〈R, G〉.

Note that the coordinate-free definition of valG and valR as tensors immediately implies that the Holant is
independent of any basis. In terms of coordinates we can verify that pairwise

∑
i ′ t i

i ′ t̃
i ′
j = δi

j . One can say that

the corresponding pair of (t i
k) and (t̃k

j) cancels out. Thus we can use the standard basis with PerfMatch(Ai − Z)

and PerfMatch(B j − Z), where Ai and B j are the constituent generators and recognizers respectively. Then
combinatorially we see clearly,

Holant(Ω) = PerfMatch(G),

as all perfect matchings M of G are partitioned according to the subset M ∩ C .
We can now consider a generalization of the Holant Theorem. We will consider a more general matchgrid having

transducers, in addition to generators and recognizers.
Let Γ be a transducer matchgate with ` input nodes and k output nodes. We attach to Γ a tensor T in V k

` ,
contravariant on k upper indices and covariant on ` lower indices. Under basis b it has the expression∑

T j1 j2... jk
i1i2...i`

bi1 ⊗ bi2 ⊗ · · · ⊗ bi` ⊗ b j1 ⊗ b j2 ⊗ · · · ⊗ b jk ,

where

T j1 j2... jk
i1i2...i`

= PerfMatch(G − Z),

and G − Z is the graph of Γ obtained by removing the subset of the input/output vertices with χZ =

i1i2 . . . i` j1 j2 . . . jk . This agrees with the definition of the standard signature u(Γ), except now we have a tensor
in V k

` . In short T = (T j1 j2... jk
i1i2...i`

).

Then it follows from general principles that under a basis transformation β j =
∑

i bi t i
j , T transforms as

(T ′)b1b2...bk
a1a2...a`

=

∑
T j1 j2... jk

i1i2...i`
t i1
a1

t i2
a2

. . . t i`
a`

t̃b1
j1

t̃b2
j2

. . . t̃bk
jk

.

In Valiant’s notation [17], under a basis β, this could have been denoted as valT(Γ , ·).
We define a generalized matchgrid Ω = (A, B, C, D) to be a weighted planar graph G which consists of a

disjoint set of g generators A1, . . . , Ag , r recognizers B1, . . . , Br , t transducers C1, . . . , Ct , and f connecting edges
D1, . . . , D f , where each Di has weight 1 and they connect output nodes of some Aα or Cγ to input nodes of some
Bβ or Cγ ′ in a 1–1 fashion.

Then we can define the extended Holant in the notation in [17]:

Holant(Ω) =

∑
x∈β

⊗ f

{
[Π1≤α≤gvalG(Aα, x |Aα)] · [Π1≤β≤r valR(Bβ , x |Bβ)] · [Π1≤γ≤t valT(Cγ , x |Cγ)]

}
.

In terms of the tensors, we simply compute a contraction on all the matching pairs of upper and lower indices, indicated
by the f connecting edges.

Since all the corresponding pairs of (t i
k) and (t̃k

j) cancel out, the extended Holant also reduces to the expression
under the standard basis. Then it follows from the same combinatorial reason that

Theorem 4.1. For matchgrid Ω = (A, B, C, D),

Holant(Ω) = PerfMatch(G).

Finally, we briefly discuss what happens when the new “basis” β is only a set of vectors (and not necessarily a
basis in the linear algebra sense). This allows for the possibility that the transformation matrix T = (t i

j) is not a square
matrix. This flexibility was shown to be useful for one problem solved by Valiant in [17].

Consider a generator Γ with m output nodes, and its tensor G ∈ V m
0 . Even though β may be linearly dependent,

we will assume that G =
∑

Gi1i2...im bi1 ⊗ bi2 ⊗ · · · ⊗ bim belong to the linear span of {β j1 ⊗ β j2 ⊗ · · · ⊗ β jm },∑
i

Gi1i2...im bi1 ⊗ bi2 ⊗ · · · ⊗ bim =

∑
j

G ′ j1 j2... jm β j1 ⊗ β j2 ⊗ · · · ⊗ β jm ,

Author's personal copy

30 J.-Y. Cai, V. Choudhary / Theoretical Computer Science 384 (2007) 22–32

for some numbers G ′ j1 j2... jm . By a slight abuse of notation, we also say the tensor G takes the form (G ′ j1 j2... jm) in the
new basis. These numbers are not unique, when β is not linearly independent, i.e., the columns of T are not linearly
independent. But any such set of numbers will do. This will be called valG(Γ).

Now consider a recognizer Γ ′ with m input nodes, to which we have already assigned a covariant tensor R ∈ V 0
m .

When T is not invertible, there will not be a set of corresponding dual basis {β j } as before. However, the covariant
tensor R =

∑
Ri1i2...im bi1 ⊗ bi2 ⊗ · · · ⊗ bim has the following evaluations: It sends β j1 ⊗ β j2 ⊗ · · · ⊗ β jm 7→∑

i Ri1i2...im t i1
j1

t i2
j2

. . . t im
jm

. Thus, when we consider the transformation β j =
∑

i bi t i
j , we will denote this tensor as

(R′
j1 j2... jm), simply as a notation, where the values R′

j1 j2... jm =
∑

i Ri1i2...im t i1
j1

t i2
j2

. . . t im
jm

.
The simple proof above for the Holant Theorem is still valid. Note that in the tensor framework, we did not change

the intrinsic meanings of G, R and the Holant as a contraction 〈R, G〉. Under a change of vectors, from b to β,
we merely changed the expression of the tensors. This change of expression is only useful in expressing a desired
computation by the matchgrid. It has no effect on the validity and proof of the Holant Theorem.

5. Performance and defect problem

In [17] Valiant showed how to solve several combinatorial problems in polynomial time using holographic
algorithms.

To his list of problems, we add the following problem.
A Boolean formula F consists of a set of clauses {C j }, each of which is a set of literals xi or xi . F is called a planar

formula if it can be drawn as a planar graph where vertices correspond to variables xi and clauses C j , and an edge
exists between xi and C j iff xi or xi appear in C j .

We will consider a planar formula F where each clause has three literals. Each clause is labeled as either
compulsory or non-compulsory. For a clause C and any assignment σ , let w(σ |C) = # of 1’s that σ assigns to
the literals in C . σ is called exacting on C if w(σ |C) = 0 or 3. σ is k-exacting on F if σ is exacting on all the
compulsory clauses and precisely k non-compulsory clauses. Let

perf(σ) = (−1)|{C |w(σ |C)≥2}|,

and

defect(σ) = (−1)|{C |w(σ |C)≤1}|.

PERFORMANCE

Input A planar formula F where each clause has three literals, and is labeled as either compulsory or non-compulsory;
integer k.
Output

∑
σ :k-exacting perf(σ).

DEFECT

Input A planar formula F as above.
Output

∑
σ :k-exacting defect(σ).

Comment: The two problems are #P-hard if the −1 is replaced by 1. For the PERFORMANCE problem if we
call an assignment σ Even if the number of clauses C for which w(σ |C) ≥ 2 is even, and Odd otherwise, then∑

σ :k-exacting perf(σ) is clearly the number of Even k-exacting assignments minus the number of Odd ones. Similarly
for the DEFECT problem. Viewed in this way, one can easily see that the two problems are essentially the same
problem.

To describe the holographic polynomial time solution to the PERFORMANCE problem, we use the basis b2 =

[n, p], where n =

(
1
1

)
, and p =

(
1

−1

)
. It can be shown that the following symmetric signature [x, y, −y, −x]

is achievable by a matchgate under basis b2, for any real values x and y. Here the notation [x, y, −y, −x] is a short
hand for the 8-dimensional tensor, with coefficients x on n ⊗ n ⊗ n (for the bit pattern 000), −x on p ⊗ p ⊗ p (for

Author's personal copy

J.-Y. Cai, V. Choudhary / Theoretical Computer Science 384 (2007) 22–32 31

the bit pattern 111), y on n ⊗ n ⊗ p, n ⊗ p ⊗ n and p ⊗ n ⊗ n (for bit patterns of Hamming weight 1), and −y on bit
patterns of Hamming weight 2. In particular we have [1, 0, 0, −1] and [1, y, −y, −1].

We also note that the matrix T =

(
1 1
1 −1

)
has inverse T −1

=
1
2 T , so that for this basis b2 what is achievable as

a generator tensor G is also achievable as a recognizer tensor T.
One can also realize the symmetric signature [1, 0, 0, 1], [1, 0, 1], and [0, 1, 0]. [1, 0, 0, 1] has the effect of 3

equal bits. [1, 0, 1] has the effect of 2 equal bits. [0, 1, 0] has the effect of 2 unequal bits. Using a planar generator
matchgate with its matchgate tensor corresponding to [1, 0, 0, 1] for a variable x has the effect of setting the possible
truth assignments of n (for 0) or p (for 1) with 3 output nodes. If a variable appears more than 3 times as a literal in
clauses, then we can “chain” together two such generator matchgates above, with a recognizer having the symmetric
signature [1, 0, 1]. This effectively produces a generator matchgate with 4 output nodes, which sets truth assignments
to x . “Chaining” k such generators together gives a “truth-setting” matchgate with k + 2 output nodes.

For each clause C , if it is compulsory, we use a clause matchgate with symmetric signature [1, 0, 0, −1]. If it is
non-compulsory we use [1, y, −y, −1]. If a variable appears positively in a clause we can use the “equal” matchgate
with the symmetric signature [1, 0, 1] to connect to this clause matchgate. If x appears negatively in a clause we can
use the “unequal” matchgate with the symmetric signature [0, 1, 0].

Then, in the Holant evaluation, for each assignment σ , for every exacting clause (either compulsory or non-
compulsory) we get a value 1 for w(σ |C) = 0 and a value −1 for w(σ |C) = 3. For a non-exacting clause
(which must be non-compulsory) we get a value y for w(σ |C) = 1 and a value −y for w(σ |C) = 2. Overall,
we get a polynomial in y, where the coefficient of yd is a sum over all assignments σ , which are exacting on all the
compulsory clauses (and perhaps some non-compulsory clauses) and non-exacting on precisely d non-compulsory
clauses; and for each such σ , the contribution to the coefficient is the value (−1)|{C |w(σ |C)=2 or 3}|

= perf(σ).
Now if one evaluates the Holant at m + 1 many distinct values of y, where m is the number of clauses, we can find

all the coefficients of this polynomial.
For the DEFECT problem we can use the symmetric signatures [−x, −y, y, x] and [−1, 0, 0, 1] instead.

Acknowledgments

We would like to thank Leslie Valiant for very interesting discussions. We also thank Andrew Yao, and his group
of students in Tsinghua University, for listening to the lectures by the first author on this material and for offering
many constructive comments. We also thank in particular Rakesh Kumar and Anand Sinha for many interesting
discussions on this and related topics. Last but not least we wish to thank the anonymous referees for constructive and
helpful comments. The first author was supported by NSF CCR-0208013 and CCR-0511679. The second author was
supported by NSF CCR-0208013.

Postscript

There has been significant progress on holographic algorithms since this paper first appeared as a conference paper
in TAMC 2006. The tensor theoretic framework introduced in this paper was crucial in some of this development.
Before this paper Valiant already gave matchgate identities [15]. In [1] we achieved a unification of the planar-
matchgate/signature theory and the generals-matchgate/character theory, and together with [2] this gives a complete
algebraic characterization of all realizable signatures. The general-matchgate/character theory was proposed by
Valiant in [16]. In [20], Valiant gave a surprising holographic algorithm for a restrictive SAT counting problem.
Furthermore he used a basis of size 2 in his holographic algorithm. Also he proved an interesting lower bound. This
lower bound proof also uses the realizability results from [2,1]. In [3], we showed that this particular restrictive SAT
counting problem can also be solved by a holographic algorithm using a basis of size 1. Furthermore we characterized
all realizable symmetric signatures. In [5] we proved a bases collapse theorem for all bases of size 2. Very recently we
have also achieved a more general collapse theorem for all bases of arbitrary size [6]. In [4] we obtained a systematic
understanding of holographic algorithms based on the tensor theoretic framework. This framework has proved to be
crucial especially for work in [3–6].

Author's personal copy

32 J.-Y. Cai, V. Choudhary / Theoretical Computer Science 384 (2007) 22–32

References

[1] J.-Y. Cai, Vinay Choudhary, Some results on matchgates and holographic algorithms, in: Proceedings of ICALP 2006, Part I, in: Lecture
Notes in Computer Science, vol. 4051, 2006, pp. 703–714. Also available at Electronic Colloquium on Computational Complexity TR06-048,
2006.

[2] J.-Y. Cai, Vinay Choudhary, Pinyan Lu, On the theory of matchgate computations, in: IEEE Conference on Computational Complexity, 2007,
pp. 305–318.

[3] J.-Y. Cai, Pinyan Lu, On symmetric signatures in holographic algorithms, in: STACS 2007, pp. 429–440.
[4] J.-Y. Cai, Pinyan Lu, Holographic algorithms: From art to science, in: STOC 2007, pp. 401–410. A more complete version is available at

Electronic Colloquium on Computational Complexity Report TR06-145.
[5] J.-Y. Cai, Pinyan Lu, Bases collapse in holographic algorithms, in: IEEE Conference on Computational Complexity, 2007, pp. 292–304.
[6] J.-Y. Cai, Pinyan Lu, Holographic algorithms: The power of dimensionality resolved, To appear in ICALP 2007.
[7] C.T.J. Dodson, T. Poston, Tensor Geometry, Second edition, in: Graduate Texts in Mathematics, vol. 130, Springer-Verlag, New York, 1991.
[8] M. Jerrum, M. Snir, Some exact complexity results for straight-line computations over semirings, J. ACM 29 (3) (1982) 874–897.
[9] P.W. Kasteleyn, The statistics of dimers on a lattice, Physica 27 (1961) 1209–1225.

[10] P.W. Kasteleyn, Graph Theory and Crystal Physics, in: F. Harary (Ed.), Graph Theory and Theoretical Physics, Academic Press, London,
1967, pp. 43–110.

[11] V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969) 354–356.
[12] É. Tardos, The gap between monotone and non-monotone circuit complexity is exponential, Combinatorica 8 (1) (1988) 141–142.
[13] H.N.V. Temperley, M.E. Fisher, Dimer problem in statistical mechanics – an exact result, Philos. Mag. 6 (1961) 1061–1063.
[14] L.G. Valiant, Negation can be exponentially powerful, Theoret. Comput. Sci. 12 (1980) 303–314.
[15] L.G. Valiant, Expressiveness of matchgates, Theoret. Comput. Sci. 281 (1) (2002) 457–471. See also 299 (2003) 795.
[16] L.G. Valiant, Quantum circuits that can be simulated classically in polynomial time, SIAM J. Comput. 31 (4) (2002) 1229–1254.
[17] L.G. Valiant, Holographic algorithms (extended abstract), in: Proc. 45th IEEE Symposium on Foundations of Computer Science, 2004, pp.

306–315. A more detailed version appeared in Electronic Colloquium on Computational Complexity Report TR05-099.
[18] L.G. Valiant, Holographic circuits, in: Proc. 32nd International Colloquium on Automata, Languages and Programming, 2005, pp. 1–15.
[19] L.G. Valiant, Completeness for parity problems, in: Proc. 11th International Computing and Combinatorics Conference, 2005.
[20] L.G. Valiant, Accidental algorithms, in: Proc. 47th Annual IEEE Symposium on Foundations of Computer Science, 2006, pp. 509–517.

