Skip to main content

Autoregressive Models of Speech Signal Variability in the Speech Commands Statistical Distinction

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Abstract

In the task of speech commands (SC) statistical distinction the SC variability models application considerably simplifies both the likelihood ratio construction procedure, and the likelihood ratio expression itself, reducing it to well-known criterion χ-square. Computer modeling allows us to use SC variability models at SC distinction decision rule synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Repin, V.G., Tartakovskiy, G.P.: The statistical analysis at a priori uncertainty and information systems adaptation. Sovetskoe Radio, Moskow (1977) [in Russian]

    Google Scholar 

  2. Fant, G.: Acoustic Theory of Speech Production. The Hague, Mouton (1970)

    Google Scholar 

  3. Flanagan, J.L.: Speech Analysis, Synthesis and Perception, 2nd edn. Springer, New York (1972)

    Google Scholar 

  4. Rabiner, L.R., Schafer, R.W.: Digital Processing of Speech Signals. Prentice-Hall, Inc., Englewood Cliffs (1978)

    Google Scholar 

  5. Chuchupal, V., Makovkin, K., Gorokhovsky, K., Chichagov, A.: A Study of the Acoustic Model Choice for Russian Speech Recognition. In: Proc. of Intern. Workshop Speech and Computer SPECOM, pp. 53–57 (2002)

    Google Scholar 

  6. Lucke, H.: Which Stochastic Models Allow Baum-Welch Training? IEEE Trans. Signal Processing 44(11), 2746–2756 (1996)

    Article  Google Scholar 

  7. Peinado, A., Segura, J., Rubio, A., Garcia, P., Perez, J.: Discriminative Codebook Design Using Multiple Vector Quantization in HMM-Based Speech Recognizers. IEEE Trans. Speech and Audio Processing 4(2), 89–94 (1996)

    Article  Google Scholar 

  8. Shahshahani, B.: A Markov Random Field Approach to Bayesian Speaker Adaptation. IEEE Trans. Speech and Audio Processing 5(2), 183–191 (1997)

    Article  MathSciNet  Google Scholar 

  9. Krasheninnikov, V.R., Armer, A.I., Derevyankin, V.P., Kozhevnikov, V.I., Makarov, N.N.: The Speech Commands Variability Simulation. In: Proc. of Intern. Conf. on Concurrent Engineering, Lubbock, USA, pp. 387–390 (2005)

    Google Scholar 

  10. Krasheninnikov, V.R., Armer, A.I.: Speech Command Variations Simulation at Different Pronounciations. In: Proc. of the Second IASTED International Multi-Conference on Automation control and information trchnology, Novosibirsk, pp. 155–158 (2005)

    Google Scholar 

  11. Krasheninnikov, V.R., Armer, A.I.: Speech commands variability model. Vestnik UlGTU No. 4/2004, Ulyanovsk, pp. 44–46 (2004) [in Russian]

    Google Scholar 

  12. Habibi, A.: Two-dimensional Bayesian Estimate of Images. Proc. of IEEE 60, 873–883 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krasheninnikov, V., Armer, A., Krasheninnikova, N., Derevyankin, V., Kozhevnikov, V., Makarov, N. (2006). Autoregressive Models of Speech Signal Variability in the Speech Commands Statistical Distinction. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751540_106

Download citation

  • DOI: https://doi.org/10.1007/11751540_106

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34070-6

  • Online ISBN: 978-3-540-34071-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics