Skip to main content

Fault Tolerant Guarding of Grids

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3980))

Included in the following conference series:

Abstract

In this paper we deal with one of the art gallery problems, namely the problem of fault tolerant guarding of grids, which is defined as the problem of finding two disjoint guard sets in a grid. Although determining the existence of such a structure is easy in general grids, the task of minimising the number of guards taken over both teams is shown to be NP-hard even for subcubic grids. Moreover, we propose a 6/5-approximation algorithm for solving the fault tolerant guard problem in grids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Białogrodzki, J.: Path Coloring and Routing in Graphs. In: Kubale, M. (ed.) Graph Colorings. Contemporary Mathematics series 352, pp. 139–152. AMS, Providence (2004)

    Google Scholar 

  2. de Castro, N., Cobos, F.J., Dana, J.C., Márquez, A., Noy, M.: Triangle-free planar graphs as segments intersection graphs. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 341–358. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. Journal of the ACM 39, 1–54 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Czyżowicz, J., Kranakis, E., Urrutia, J.: A simple proof of the representation of bipartite planar graphs as the contact graphs of orthogonal straight line segments. Information Processing Letters 66, 125–126 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dangelmayr, C.: Intersection graphs of straight-line segments. In: 4th Annual CGC Workshop on Computational Geometry, Stels (2004)

    Google Scholar 

  6. Dyer, M.E., Frieze, A.M.: Planar 3DM is NP-complete. Journal of Algorithms 7, 174–184 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feige, U., Ofek, E., Wieder, U.: Approximating Maximum Edge Coloring in Multigraphs. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 108–121. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Finke, U., Hinchirs, K.: Overlaying simply connected planar subdivisions in linear time. In: Proc. ACM SoCG, pp. 119–126 (1995)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, New York (1979)

    Google Scholar 

  10. Graham, R.L., Groetschel, M., Lovasz, L.: Handbook of Combinatorics, vol. 1, pp. 211–212. Elsevier, Amsterdam (1995)

    MATH  Google Scholar 

  11. Hartman, I.B.-A., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Mathematics 87, 41–52 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Holyer, I.: The NP-completeness of edge-colouring, SIAM. Journal of Computing 10, 718–720 (1981)

    MATH  MathSciNet  Google Scholar 

  13. Jacobs, D.P., Jamison, R.E.: Complexity of recognizing equal unions in families of sets. Journal of Algorithms 37, 495–504 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kawarabayashi, K., Matsuda, H., Oda, Y., Ota, K.: Path factors in cubic graphs. Journal of Graph Theory 39, 188–193 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. König, D.: Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Math. Ann. 77, 453–465 (1916)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liaw, B.C., Huang, N.F., Lee, R.C.T.: The minimum cooperative guards problem on k-spiral polygons. In: Proc. CCCG 1993, pp. 97–101 (1993)

    Google Scholar 

  17. Liaw, B.C., Lee, R.C.T.: An optimal algorithm to solve the minimum weakly cooperative guards problem for 1-spiral polygons. Information Processing Letters 52, 69–75 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Małafiejski, M., Żyliński, P.: Weakly cooperative guards in grids. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 647–656. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Nierhoff, T., Żyliński, P.: Cooperative guards in grids. In: 3rd Annual CGC Workshop on Computational Geometry, Neustrelitz (2003)

    Google Scholar 

  20. Ntafos, S.: On gallery watchmen in grids. Information Processing Letters 23, 99–102 (1986)

    Article  MATH  Google Scholar 

  21. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  22. Scheinerman, E.R.: Intersection classes and multiple intersection parameters of graphs, PhD thesis. Princenton University (1984)

    Google Scholar 

  23. Urrutia, J.: Art Gallery and Illumination Problems. In: Handbook on Computational Geometry. Elsevier Science, Amsterdam (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kosowski, A., Małafiejski, M., Żyliński, P. (2006). Fault Tolerant Guarding of Grids. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751540_18

Download citation

  • DOI: https://doi.org/10.1007/11751540_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34070-6

  • Online ISBN: 978-3-540-34071-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics