Skip to main content

Finite Element Analysis of the Thermoforming Manufacturing Process Using the Hyperelastic Mooney-Rivlin Model

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3980))

Included in the following conference series:

Abstract

Thermoforming is a manufacturing process widely used to produce thin thermoplastic parts. In this process a previously extruded thermoplastic sheet is clamped and then heated and formed into a mold cavity using a differential pressure. In this paper a finite element model of the thermoforming process of an ABS sheet is proposed and numerical results are compared to data from literature. Thermoplastic sheet is modelled according to the membrane formulation. An implicit time scheme has been adopted for the integration algorithm. Mechanical behaviour of the processing material is assumed as hyperelastic, according to the two parameters Mooney-Rivlin model. Mathematical formulation of the mechanical model is exposed. The proposed model allows to evaluate material thinning, stresses, strains and contact status between the processing material and the die.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourgin, P., Cormeau, I., Saint-Matin, T.: A First Step Towards the Modelling of the Thermoforming of Plastic Sheets. Journal of Materials Processing Technology 54, 1–11 (1995)

    Article  Google Scholar 

  2. Schmidt, F.M., Agassant, J.F., Bellet, M., Desoutter, L.: Viscoelastic Simulation of PET Stretch/Blow Molding Process. Journal of Non-Newtonian Fluid Mechanics 64, 19–42 (1996)

    Article  Google Scholar 

  3. Stephenson, M.J., Ryan, M.E.: Experimental Study of the Thermoforming of a Blend of Styrene-Butadiene Copolymer with Polystyrene. Polymer Engineering and Science 37(2), 450–459 (1997)

    Article  Google Scholar 

  4. McEvoy, J.P., Armstrong, C.G., Crawford, R.J.: Simulation of the Stretch Blow Molding Process of PET Bottles. Advances in Polymer Technology 17(4), 339–352 (1998)

    Article  Google Scholar 

  5. Gao, D.M., Nguyen, K.T., Hetu, J.F., Laroche, D., Garcia-Rejon, A.: Modeling of Industrial Polymer Processes: Injection Molding and Blow Molding. Advanced Performance Materials 5, 43–64 (1998)

    Article  Google Scholar 

  6. Song, Y.H., Zhang, K.F., Wang, Z.R., Diao, F.X.: 3-D FEM Analysis of the Temperature Field and the Thermal Stress for Plastic Thermalforming. Journal of Materials Processing Technology 97, 35–43 (2000)

    Article  Google Scholar 

  7. Nam, G.J., Ahn, K.H., Lee, J.W.: Three-Dimensional Simulation of Thermoforming Process and Its Comparison With Experiments. Polymer Engineering and Science 40(10), 2232–2240 (2000)

    Article  Google Scholar 

  8. Marckmann, G., Verron, E., Peseux, B.: Finite Element Analysis of Blow Molding and Thermoforming Using a Dynamic Explicit Procedure. Polymer Engineering and Science 41(3), 426–439 (2001)

    Article  Google Scholar 

  9. Yu, J.C., Chen, X.X., Hung, T.R., Thibault, F.: Extrusion of Extrusion Blow Molding Processes Using Soft Computing and Taguchi’s Method. Journal of Intelligent Manufacturing 15, 625–634 (2004)

    Article  Google Scholar 

  10. Wiesche, S.: Industrial Thermoforming Simulation of Automotive Fuel Tanks. Applied Thermal Engineering 24, 2391–2409 (2004)

    Article  Google Scholar 

  11. Erchiqui, F., Gakwaya, A., Rachik, M.: Dynamic Finite Element Analysis of Nonlinear Isotropic Hyperelastic and Viscoelastic Materials for Thermoforming Applications. Polymer Engineering and Science 45, 125–134 (2005)

    Article  Google Scholar 

  12. Unwin, A.P., Ward, I.M., Ugail, H., Bloor, M.I.G., Wilson, M.J.: Optimal Design and Manufacture of Thin-Walled Polystyrene Structures. Polymer Engineering and Science 45, 694–703 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carlone, P., Palazzo, G.S. (2006). Finite Element Analysis of the Thermoforming Manufacturing Process Using the Hyperelastic Mooney-Rivlin Model. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751540_86

Download citation

  • DOI: https://doi.org/10.1007/11751540_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34070-6

  • Online ISBN: 978-3-540-34071-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics